

hits on Si pads

 Δ (luminosity) [%]

Precision luminometry ensor radius 145 mm for tests of the Standard Model 35.9 fb⁻¹ (13 TeV) $\frac{8}{6}$ at (HL-)LHC **Total uncertainty** u^+u^- sample Unfolding $d\sigma/dp_{\tau}^{Z}$ **Momentum resolution Background Identification & trigger** Reconstruction **Statistical** Uncertainty in ntegrated luminosit Gabriella Pásztor Muon Barrel (MB) 40 MHz scouting Eötvös University, BudapestL1 trigger primitive L1 muons, tracks, calorimeter objects $10²$ $p_{\mathsf{T}}^{\mathsf{Z}} \, [\mathsf{GeV}]$ 10 **Hadron Forward** Calorimeter (HF) 3000 fb⁻¹ (13 TeV) eta rings 31 & 32 3000 fb⁻¹ (13 TeV) hit towers & ΣΕ. Total uncertainty $\left[\rho_6 \right] \left(\frac{1}{\epsilon} \rho \right)^{10}$ **CMS CMS** - Expt. uncert. only **Projection Preliminary** Lumi, uncert, only **Projection Preliminary REMUS** ambient dose σ_{ggH} **Communication** mm equivalent rate **Outer Tracker** 000 σ_{VBF} Laver 6 (OT L6) L1 track stubs TITTI σ_{WH} **Tracker Endcap Pixe** Detector (TFPX) $\sigma_{\rm ZH}$ — Λ (σ) = 3.1% clusters & coincidences $\Delta(\sigma) = 1.5\%$ σ_{ttH} TEPX Disk 4 Ring 1 (D4R1) **Fast Beam Condition Monitor (FBCM)** clusters & coincidences 0.5 1.5 $\overline{2}$ 2.5 0.02 0.04 0.06 0.08

Expected uncertainty

Outline

Physics motivation: test of the Standard Model

Methodology

Attacking the leading uncertainties

- Understanding beam-beam interactions
- Improved techniques for precision calibration highlights
	- Orbit movements
	- Transverse non-factorization of the beam particle density
	- Z boson counting

Luminosity instrumentation and the CMS phase-2 detector upgrade

Luminosity

- ▸ Quantifies interaction rate at colliders
- ▸ Time-dependent "instantaneous" luminosity: $R_{\rm x}(t) = \mathcal{L}(t) \cdot \sigma_{\rm x}$
	- **Feedback to accelerator, detector operation**
- \triangleright Integrated luminosity over time: $L_{int} = \frac{f(x)}{f(x)}dt$
	- Necessary to normalize physics measurements to derive cross sections

CMS

 3.0

Recorded luminosity ($\frac{\hbar^{-1}}{1.0}$)
 $\frac{\hbar}{\hbar}$ and $\frac{\hbar}{\hbar}$ and $\frac{\hbar}{\hbar}$

 1.0

 $0F$

설

Peak

Bunches can be different:

single bunch instantaneous luminosity (SBIL): $\mathcal{L}_{\mathsf{b}}(t)$

- max. ~ 7 Hz/ub = $7 \cdot 10^{30}$ cm⁻²s⁻¹
- ▸ Multiple interactions per bunch crossing
	- Event pile up \sim 50

Data included from 2010-03-30 11:22 to 2023-07-16 23:02 UTC

3

How luminosity affects LHC program?

- Test of the Standard Model
	- $precise cross sections (σ) measurements$
	- compare to model predictions and other experiments
- Quest for New Physics beyond the Standard Model
	- $discovery \rightarrow measure \sigma$
	- no signal \rightarrow put limit on maximal σ allowed by the results
- LHC physics goals require a precision around ~1%
	- ▸ Real-time (online) 2-5% bunch-by-bunch (BbB) measurement
		- Assist beam optimisation, luminosity levelling -
		- Optimisation of detector operations, e.g. fast online "trigger" selection
	- Ultimate 1% with final calibration and corrections offline
		- Luminosity uncertainty still dominant in key channels of physics interest (e.g., Drell-Yan, top quark pair, and Higgs studies)
		- ... but subdominant in most analyses

Final ("precision") uncertainty / year: 1.6% (2015), 1.2% (2016) Current preliminary uncertainty / year: 2.3% (2017), 2.5% (2018), 1.4% (2022) Run 2 (2015-2018) preliminary combined: 1.6%

Drell-Yan lepton pair production at HL-LHC

Assuming Run-2 systematics for other experimental contributions

Top quark pair production at HL-LHC

7

Two scenarios considered for other experimental uncertainties

- Extemdance Run 2 \rightarrow total uncertainty on cross-section excluding luminosity: 3.1%
- ▸ Phase 2 performance with improved lepton ID (0.5%/lepton), top pT modelling (⅓), jet energy scale ($\sim \frac{1}{2}$), other ($\frac{1}{2}$) \rightarrow total uncert. excluding luminosity: 1.5%

Higgs boson properties at HL-LC

M

In the most precisely measured Higgs boson production process, gluon fusion (ggH), luminosity uncertainty will dominate the experimental uncertainty at HL-LHC even with the target 1% precision and will remain significant even when including the expected theoretical uncertainties

ጣሽ

Data statistical uncertainties in cross sections 0.8% (ggH), 2.6% (VBF), 4.6% (WH), 3.9% (ZH), 1.8% (ttH), in coupling modifier parameters ~1%

Luminosity measurement strategy

$$
R(t) = dN / dt = \mathcal{L}(t) \cdot \sigma
$$

Absolute calibration

- \triangleright Identify luminometers with \sim linear rates
- \triangleright Convert measured rates to luminosity using a calibration constant: visible cross-section (σ_{vis})
- \blacktriangleright Measure rate and luminosity in-situ from beam parameters in well-controlled environment: van der Meer (vdM) transverse beam-separation scans (well-separated bunches, PU<1) \rightarrow derive visible cross-section
- ▶ Main challenge: corrections for various systematic effects

Integration over time and bunches

- ▶ Calculate "integrated" luminosity in physics conditions for a given time period: $L = \int R(t) dt / \sigma_{\text{vis}}$
	- \rightarrow stability of instrumentation in time (aging, operating conditions,...)
- Extrapolation of σ_{vis} to physics conditions (PU up to 70 in Run 2/3, bunch trains)
	- \rightarrow linearity of detector & counting method
- ▶ Out-of time effects (e.g., from activation of detector material, electronic time walk, late particles…)

Luminometer calibration

Luminosity from beam parameters for a single bunch crossing

$$
\mathcal{L} = f_{\text{rev}} N_1 N_2 \int \rho_1(x, y) \rho_2(x, y) \, dx \, dy = f_{\text{rev}} \frac{N_1 N_2}{2 \pi \sum_{x} \sum_{y} P_{y}}
$$

Bunch intensities Bunch particle density distributions in transverse plane

Effective bunch overlap widths in x and y transverse directions

 N_1N_2

Assumes transverse factorisation of bunch particle density distributions:
$$
\varrho_i(x,y) = \varrho_{x,i}(x) \cdot \varrho_{y,1}(y)
$$

In a calibration fill optimised for best precision

- Measure head-on luminosity from beam parameters (ℓ) using Van-der-Meer (VdM) transverse beam separation scans (or beam - gas imaging in LHCb)
- Measure luminometer head-on rate (R_0)
- Define the calibration constant as $\sigma_{\text{vis}} = R_0 / \mathcal{L}$

Typical conditions in VdM fills

- low inst. luminosity & PU
- single, well-separated bunches (no trains!) to minimize long-range beam-beam interactions
- large transverse beam size (large β^*) w.r.t. vertex resolution
- zero crossing angle

σ_{vis} determination with vdM method
Rate for different transverse beam

- ▸ Rate for different transverse beam separations Δx , Δy for ±6 σ_{beam} in fine steps
- ► Bunch overlap widths $Σ_ x, Σ_ y$ given by normalised integral
- \triangleright Fit functions vary: g, g+g, poly×g, etc.
- **Visible cross-section**

$$
\sigma_{\text{vis}} = \frac{2\pi \Sigma_x \Sigma_y}{N_1 N_2 f_{\text{rev}}} \cdot R_0
$$

- ▸ Ingredients to measure
	- Bunch intensities N_1, N_2
	- \cdot Background affecting R_0
	- ▸ Length-scale & orbit movements affecting separation ∆x, ∆y, and thus
		- $Σ_x^{}, Σ_y^{}$
	- Non-factorisation of beam particle densities $\varrho_{12}(x,y)$
	- ▸ Beam-beam interactions affecting bunch shape and separation

Width ~ Integral / Peak: $\mathbf{\Sigma}_{\mathsf{x}} = \int R_{\mathsf{x}}(\Delta \mathsf{x}) \mathsf{d}(\Delta \mathsf{x}) / \left(\sqrt{2} \sqrt{\pi} \cdot R_{\mathsf{x}}(0) \right)$

Luminosity uncertainties

$\cap \mathcal{N}$

2022 (preliminary) 2015, 2016 Source ction $(\%)$ Cncertainty $(\%)$ (final) Calibration $\overline{3.4}$ **Beam current** $\overline{0.2}$ 0.1 Ghost and satellite charges 0.2 0.4 0.2 Orbit drift 0.2, 0.1 $\overline{0.1}$ $\overline{0.1}$ 0.3 0.8, 0.5 Residual beam positions 0.0 Beam-beam effects 0.5 1.0 0.4 0.2, 0.3 Length scale -1.0 0.1 Factorization bias 0.8 0.5 1.0 0.5 Scan-to-scan variation $\big\}$ 0.6, 0.3 Bunch-to-bunch variation 0.1 Cross-detector consistency 0.4 Integration 0.3, 0.4 **HFET OOT pileup corrections** 0.2 0.6, 0.5 Cross-detector stability 0.5 0.5, 0.3 Cross-detector linearity 0.5 Calibration 1.3, 1.0 1.2 1.0, 0.7 Integration 0.8 1.6, 1.2 Total 1.4

Provided by LHC beam instrumentation

CMS-PAS-LUM-22-001 EPJC 81 (2021) 800

Uncertainty (%)

Luminosity uncertainties

Major contributions of ELTE team

Uncertainty (%)

CMS-PAS-LUM-22-001 EPJC 81 (2021) 800

Strong collaboration between experiments and machine experts to tackle common systematics

Beam-beam (BB) interactions

Electromagnetic interaction between the charged particles of the beams

 \rightarrow all particles perturbed (only few collide!), trajectory change due to non-linear force:

 $Ne^{2}(1+\beta_{rel}^{2})$

 $F_1 = \pm$

- Affects beam separation: "beam-beam deflection"
	- coherent effect on a bunch
	- estimated analytically using Bassetti–Erskine formula
- Distorts the bunch sizes, shapes: "optical" or "dynamic-beta" effect
	- incoherent effect on single particles
	- modifies bunch overlap area, thus measured rates in luminometers
- Also changes the betatron tunes (tune shift & spread: ΔQ∝ξ), causes particle losses, emittance blow up…

Model with multiparticle simulations: B*B & COherent Multibunch Beam-beam Interaction (COMBI)

After Run 2: large correction to previous calculation based on linear approximation (lumi results before 2019 biased by \sim 1%)

betatron tune \Rightarrow # of transverse oscillations of a particle in one revolution around the ring $(Q_x=64.31,$ Q_{y} =59.32 for pp at top energy)

Beam-beam interactions interactior LHC working group (LLCMWG) effort beam? \rightarrow correction scheme, uncertainty estimation prescription **Defocus** Per-bunch input to calculate luminosity bias $\ell/\ell_0(\Delta \mid \xi_{\rm R}, {\sf q}_{\rm x}, {\sf q}_{\rm y})$ **Focus** - Luminometer based transverse bunch width (assuming round beams with equal sizes: $\sigma_R^2 = \Sigma_x \Sigma_y / 2$) Eur. Phys. J C84 (2024) 17 - Bunch intensity (assuming $N = N_1N_2/2$) - Beam parameters: β*, Q_x, Q_y, E_b **COMBI** Integra 1.005 $-MADX$ 0.99 - Number of collisions per orbit B*B Integral COMBI Gaussian (\rightarrow tune shift, effective fractional tunes $\mathsf{q}_\mathsf{x},\, \mathsf{q}_\mathsf{y})$ **O** Analytical Nominal beam separation $\Delta [\sigma_0]$ Non-Uncertainties due to Q_{x} , Q_{y} , β^* , non-Gaussian, Gaussian 1.010 shape non-round, non-equal sized & charged bunches… 0.990 1.005 Fill 8381 (2022, 13.6 TeV Fill 8381 (2022, 13.6 TeV 1.000 **MS** Preliminar CMS Preliminary **HFET. vdM1** 0.995 HFET. vdM1 ប្ល 0.990 COMBI. Optical distortion B*B, Optical distortion င် ၀.985 Nominal beam separation Δ [σ_0] -[•] MADX, Optical distortion **Opposite** ក្ខី _{0.980} effects of $0.985 -$ - 8 0.975 deflection & 흔 0.970 0.980 optical distortion

400

600

0.965 0.960

 -400

Beam separation $[\mu m]$

200

Beam separation $[\mu m]$

CMS-PAS-LUM-22-001

15

Nominal beam separation Δ [σ_0]

 \longleftarrow COMBI (X) COMBI (Y) MADX (X) MADX (Y) $B*B(X)$

 $B*B(Y)$

Analytical (X

Analytical (Y

Orbit drift from nominal position

- ▸ Measured by beam position monitors (BPMs)
- ▸ Correct nominal beam positions & separations (∆x, ∆y)
- ▸ "Arc" BPMs in LHC arcs adjacent to experiments
	- ▸ Their data transformed to beam positions at the interaction points (IPs) using LHC optics model
- ▸ Diode Orbit and Oscillation (DOROS) BPMs at Q1 triplet quadrupoles 21.5 m from the IP
- ▸ Average Beam 1 & Beam 2 orbit tracked by the movements of the luminous region ("beam spot") at the IPs via reconstructed vertex positions by the tracking detectors
- ▸ All orbit measurements are integrated over all bunches
- ▸ Orbit drifts have many origins, e.g.,
	- ▸ Beam-beam deflection (affects separated colliding bunches)
	- ▸ Magnetic non-linearities (systematic "hysteresis")
	- ▸ Slow "random" orbit drifts (assumed to be linear between head-on measurements before and after scans) 4 LHC BPM data **DOROS**

arc

▸ Orbit jitters (instabilities with few 10s of seconds characteristic time) $\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\text{105 of seconds characteristic time} & \bullet \\
\text{116} & \bullet & \bullet\n\end{array}$

Measured linear orbit drift wrt. nominal orbit during head-on collisions (before, in the middle, and after scans)

"Residual" orbit drifts and magnetic non-linearities

Systematic residual orbit drifts observed in BPM data:

 $Residual = BPM - \alpha \cdot Nominal$

- β∙BBdeflection
- linearOD

- BPM length scale (α) wrt LHC nominal positions from corrector magnet currents

- Beam-beam deflection corrected by a geometric factor to account for the BPM distance from the IP and scaled (β) to account for non-colliding bunches and BPM instrumental effects

Possible source: magnetic non-linearities

- All experiments observe similar effects

- Dedicated measurements performed in Run 3 and by magnet experts in the lab (CERN-ACC-NOTE-2022-0013) showing consistent results

Correction improves consistency of measured visible cross section values from scan to scan

Transverse length scale (LS) calibration

- Scale factor between nominal displacement from LHC dipole corrector magnet currents to actual displacement in tracker reference frame using luminous region (beamspot) position from reconstructed vertices
- Special scans performed to move the beamspot position
	- Beams moved together in equidistant steps with constant (non-zero) beam separation to measure average B1&B2 LS
		- ▸ Fast, allows to measure back & forth
	- ▸ One beam moved in equidistant steps with the other beam performing 3-step mini-scans around it to determine the head on position, having thus variable beam separation during the scan
		- ▸ Provides per beam LS
- Main difficulty: orbit drift (OD) during the scans Typical uncertainty 0.2 -0.3%

Adjusts $\mathbf{\Sigma}_{\scriptscriptstyle \chi^{\prime}}\,\mathbf{\Sigma}_{\scriptscriptstyle \chi}$

OD correction:

- Correct nominal positions using beam position monitor (BPM) data
- BPM length scale enters
- Few steps, possible large effect of "random" shifts / jumps

LS correction can reach -1% Typical uncertainty 0.2-0.3%

Transverse beam particle density factorisation

▶ Even with beam tailoring in the LHC injection chain, the VdM assumption of

▶ Various methods developed to measure the effect and derive bunch shapes

 \rightarrow Beam imaging using a special scan with a stationary beam scanned by the other Luminous region analysis exploiting the 3D beam spot reconstruction (position,

 $\varrho_{\text{I}}(\mathsf{x},\mathsf{y}) = \varrho_{\text{x,i}}(\mathsf{x}) \cdot \varrho_{\text{y,1}}(\mathsf{y})$ not exact

using reconstructed vertex position distributions

Time [min]

Transverse beam overlap shape factorisation

- \rightarrow Factorisation effects can change from bunch to bunch (& in time)
- ▸ Study directly the overlap area from luminometer rates
- ▸ Simultaneous analysis of VdM & offset/diagonal scans
	- ▸ Similar to LHCb pioneered 2D scan analysis
	- ▸ Orbit drifts during extended data taking need to be controlled
	- ▸ Applicable in PbPb collisions where beam size similar to vertex resolution
- First evidence for bunch family dependence (PS Booster ring, number of colliding IPs) being not

Fill 8381 (2022, 13.6 TeV

1D SG fit to vdM

1D SG fit to off-axis

 -0.2

vdM data

offset data

CMS Preliminary

 s cans: $vdM3+off$ **BCID: 2965**

Detector: HFE

Model: SG

 -0.06

 0.05

 0.04 0.03 0.02 0.01 0.00

Probing uncorrected / unknown effects

variation of calibration constant

Bunch-by-bunch and scan-to-scan Luminosity cross-detector comparison
variation of calibration constant in non-scanning periods of a vdM fill

Measures beam-dependent uncorrected effects

Essential to have several, independently calibrated luminometer to check for unknown instrumental biases

Luminosity uncertainties **Exercises**

Emittance scans: mini-vdM scans in physics fills

 0.15

 0.10

 0.05

- ► Fast luminosity scans with small ~3 $\sigma_{_{\rm D}}$ maximum separation with 7-15 points of 10 s each
- ▸ Less precise than VdM scans due to uncorrected biases, used for relative measurements in similar conditions
- \triangleright Study time dependence of luminometer response \rightarrow efficiency monitoring
- ▸ Different SBILs from bunch to bunch and at start and end of fill \rightarrow measure (non-)linearity CMS Preliminary 2018, Fill 7139, \sqrt{s} =13 TeV

Integration systematics: stability & linearity

Compare independently calibrated luminometer measurements

- independently vdM calibrated
- corrected for out-of-time effects

 $CMS-PAS-LUM-22-001$

- linearity and efficiency monitored & corrected using short vdM-like "emittance" scans

Slope of L(det)/L(ref) vs. L(ref)

Typical stability uncertainty: 0.5-0.6% Typical linearity uncertainty: 0.5%

CMS-PAS-LUM-22-001 EPJC 81 (2021) 800

HL-LHC schedule and challenges

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training Goal: ~15-20x more data than recorded so far

Challenges

- High-radiation environment: replace tracker & endcap calorimeter
- \blacktriangleright High pileup up to $\langle \mu \rangle$ =140-200, high particle multiplicity: improve granularity, use timing information
- ▶ Extended physics reach: enlarged acceptance in |η|
- \triangleright High data rate: upgrade trigger and DAQ

The CMS Phase-2 Upgrade

• Beam-induced background

Approved in 2022

14 technical systems

- Bunch-by-bunch luminosity: 1% offline, 2% online
- Neutron and mixed-field radiation monitors

29 SS: stainless steel, FE: front end, BE: back end, MIP: minimum ionizing particle, SiPM: Silicon Photomultiplier

Main features of CMS Phase-2 upgrade

- ⊳ New silicon pixel and strip tracker with higher granularity and larger coverage (|η|<4)
- ⊳ New "imaging" high-granularity endcap calorimeter
- ⊳ Extended muon coverage in forward region (|η|<2.8), new high-granularity GEM detectors
- ⊳ Precision timing by dedicated MIP timing detectors with 30-50 ps resolution (|η|<3) supplemented

by improved timing information from muon detectors and calorimeters

- ⊳ Upgraded electronics with higher bandwidth
- \triangleright Fully reconstructed p_{τ} > 2 GeV tracks & particle-flow at level-1 trigger, increased rate (750 kHz) and latency (12.5 μs), 40 MHz scouting
- ⊳ High-level trigger with heterogeneous architecture,7.5 kHz output rate*[1]

Upgrade in full swing, first full phase-2 detector installed

Luminosity measurement at HL-LHC

- 1% target precision for integrated luminosity per year in very demanding conditions
	- ▸ event pile-up up to 140-200 at 40 MHz
	- \blacktriangleright 10 years of data taking to collect >3000 fb⁻¹ data
		- **EXECUTE:** neutron fluences $\sim 10^{16}$ cm⁻² in forward pixel tracker
		- \triangleright total ionizing dose ~10⁷ Gy
- Measure pileup distributions, i.e. bunch-by-bunch luminosity for simulation
- Real-time feedback with \sim 2% precision for luminosity levelling
	- \triangleright from 17 to (5-7.5) \cdot 10³⁴ cm⁻²s⁻¹ with β^{*}, crossing angle, beam separation adjustments
- Manage non-linearity inherent in every luminometer, as well as train effects
	- ▸ extrapolating current luminometer linearity performance to $HL-LHC \rightarrow 2-3%$ uncertainty
- ▸ Minimize long-term efficiency loss using radiation hard instrumentation
- ▸ Understand the beam properties with improved instrumentation

CMS Simulation Preliminary

1 MeV neq. Si Fluence after 4000 fb⁻¹ Proton-Proton Collisions at 7 TeV per beam, ($\sigma_{\text{inelas.}}$ = 80.0 mb) 30

25

20

 $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ 15

 z (cm)

CMS FLUKA Simulation v.6.0.0.2

 (cm^{-2})

 10^{19}

 10^{18}

 10^{17}

BRIL SUBSYSTEMS for bunch-by-bunch Phase-2 luminometry

Pillars of luminometry

1. Consumer of CMS subsystem data (much like the trigger)

2. Dedicated BbB luminometer: FBCM

- ▸ Independent, under full control of BRIL
- ▸ Luminosity & BIB outside stable beams
- ▸ Simple, reliable, high precision
- Unique asynchronous / sub-BX timing capabilities
	- ▸ Time structure of beams
	- ▶ Orthogonal systematics
- equivalent rate > Proven technology (Run-2 BCM1F)
	- ▸ Pragmatic, reuses existing components, while new ones, especially FE ASIC is designed to fulfil only BRIL requirements

3. Principle of maximum commonality

- ▸ Histogramming firmware for subsystem backends
- \triangleright Run control and data acquisition, independent of CMS

counting methods with different systematics 32 Robust system of diverse technologies and

Luminosity architecture

Tracker Luminosity

Tracker Endcap Pixel Detector

- ▶ Real-time Pixel Cluster Counting (PCC) on 2 m² of Si @ 75 kHz
- ▸ 2- & 3-fold coincidence counting for calibration & monitoring
- ▸ Data split in pixel back end, luminosity events sent to dedicated processor board for real time cluster reconstruction and counting Disk 4 Ring 1
- ▸ Fully independent (including services), operated by BRIL
- \triangleright Always on \rightarrow provides beam-induced background and luminosity measurements during machine development, commissioning, filling cycle incl. ramping
- ▸ Full trigger bandwidth for BRIL: 825 kHz at PU200, 2-4 MHz at low PU Outer Tracker Layer 6 - best statistical power
- ▸ Histogramming instances at OT back end count stubs from 12 modules each at 40 MHz during stable beams using dynamical error handling

BRIL Trigger Board

- ▸ Clocking infrastructure for FBCM / D4R1
- ▸ Unbiased luminosity triggers for TEPX / D4R1
- ▸ Forwards beam 1 and beam 2 signals from Beam Pickup Timing Experiment (BPTX) To Global Trigger (GT)

Fast Beam Conditions Monitor (FBCM)

- ▸ Stand-alone luminometer under full control of BRIL
- ▸ Independent of CMS services (DAQ, TCDS, run control, magnet status)
- ▸ Available outside stable beams (additional safety, e.g. tracker high voltage interlock)
- ▸ Inspired by Run 2 BCM1F concept: based on Si-pad sensors with fast front-end ASIC
- ▸ Adapting Phase-2 Inner Tracker (IT) electronics components
- Triggerless readout with sub-BX timing to study time structure of beams and beam-induced background
- ▶ 288 Si-pad sensors of 2.89 mm² at r = 14.5 cm arranged on 4 half-disks, with modular design
- ▸ Two option for sensors: 290 um 2-pad (Run-3 BCM1F) or 150 um 6-pad (lower S/N, more rad hard, common GND ring to limit sensitive volume, produced on IT wafers)
- ▸ Location behind Disk 4 of the TEPX in the Tracker cold volume

Good statistical precision, excellent linearity, no significant degradation with aging

Example (Run3 data) of the aggregated per bunch crossing histogram as expected to be read out from Apollo System-on-chip to BRIL DAQ in Run 4

Fast Beam Condition Monitor design

- ❏ 2x2 identical half disks at 2.8 m from IP with 12 modules each
- ❏ Mechanics follows CMS inner tracker design (materials, manufacturing, vendors) with minor modifications
- ❏ Independent, dedicated BRIL ring connected to the Tracker Endcap Pixel (TEPX) detector cooling manifold Sensor radius 145 mm

Inner radius 120 mm

Near

FBCM half-disk

- ❏ 6-channel ASIC optimised for fast time response & low noise, qualified to place production order
- ❏ Service boards at higher radius provide power, control, and read out for 3 front-end modules each

service board

DC-DC converter $(12 V \rightarrow 1.25 V)$

Front-end HV connector

DC-DC LV connector

1) Si-pad sensors, n-on-p

Send analog LV signal pulse via short, low-capacitance bonds

- 65 nm, radiation hard
- 3x3 mm², wire-bonded
- 6 channels, SLVS output
- Triggerless asynchronous read out
- F lectronic noise ≤ 800 e FNC
- Adjustable peaking time (4-8 ns)
- Timewalk below 5 ns
- Linearity up to 6 fC
- Fast amplifier and comparator
	- Fast return to baseline after hit with multiple MIPs (150 fC)
	- Double-hit resolution after discrimination 25 ns
- Expected dose 200 Mrad, fluence 2.5 \cdot 10¹⁵ n_{eo}/cm²
- Exerce 2:0 To Theqoth I

3) IT portcard

6-pad, 150 um thick

First test beam measurement in April

lpGBT transceiver samples binary signal, packs into frames, and outputs via VTRx+ electro-optical interface

4) ATCA-standard back-end Apollo FPGA board

- Unpacks data
- Measures ToA and ToT
- Aggregates data to
- sub-bunch-crossing histograms

SLVS = Scalable Low-Voltage Signal SEU = Single Event Upset (bitflip) lpGBT = Low Power GigaBit Transceiver VTRx+ = Versatile Link Plus Transceiver

Capabilities of Phase-2 luminometers

Chapter 5 of the [BRIL Phase-2 TDR](http://cds.cern.ch/record/2759074)

Orthogonal instrumentation systematics!

Precision luminosity determination

- … required by EW and top physics at (HL-)LHC
- … challenging (and a lot of fun!)
- … necessitates
	- good understanding of beam physics [10.1140/epjc/s10052-023-12192-5](https://doi.org/10.1140/epjc/s10052-023-12192-5)
	- excellent quality of beam instrumentation to determine bunch intensity & shape, orbit position, etc.
	- luminometer data quality rigorously monitored (development of machine learning based tools, e.g. for CMS Pixel Luminosity Telescope (PLT) [10.1140/epjc/s10052-023-11713-6](https://doi.org/10.1140/epjc/s10052-023-11713-6)
	- refined techniques to calculate corrections for the absolute calibration of the luminometer visible cross sections [10.1140/epjc/s10052-021-09538-2](https://doi.org/10.1140/epjc/s10052-021-09538-2) [CMS-PAS-LUM-22-001](https://cds.cern.ch/record/2890833) [10.1140/epjc/s10052-023-12268-2](https://doi.org/10.1140/epjc/s10052-023-12268-2)

The requirements at HL-LHC even more severe [CERN-BE-2022-001](https://cds.cern.ch/record/2802720) [CERN-LHCC-2021-008](https://cds.cern.ch/record/2759074?ln=en)

- → development of dedicated luminometer, FBCM (incl. ELTE, Uni Debrecen) [arXiV: 2402.03971](https://arxiv.org/abs/2402.03971)
- \rightarrow adaptation of various CMS sub-systems for lumonimetry
- The goal of 1% luminosity precision at HL-LHC is challenging but in our reach

Beam Radiation, Instrumentation and Luminosity project

15 technical systems for radiation monitoring, beam timing and abort, beam-induced background, and luminosity measurements

New

BRIL Trigger Board (BTB)

BRIL

EMS

- Generates independent luminosity triggers
- Encodes beam 1 & 2 discriminated signals from BPTX for Global Trigger
- **Generates TCDS2-like** control stream based on LHC clock for D4R1 and FBCM

BRIL Data Acquisition (BRILDAQ)

- Independent run control
- Read out and process luminosity histograms, calibration and monitoring data
- Share data real-time
- Database of BRIL information for physics

Architecture design with CMS DAQ Follow evolution of XDAQ platform

[Link](https://cds.cern.ch/record/2759074/files/CMS-TDR-023.pdf) to TDR 42

Histogramming and BRIL DAQ

Data source: reading histograms from hardware memory, publishing to XDAQ b2in eventing Data processor: local data aggregation, plotting & storing of histograms

Luminometry from Run 2 to Phase 2

Natural progression from Run 2

- ➢ Successful construction of two detectors during LS2
- \triangleright Participation in Run 3 demonstrator systems with Phase-2 histogramming firmware
- \triangleright Semi-online PCC in Run 3

Central paradigm: maximum commonality

Since conception of BRIL, strengthen the use of common components in data acquisition and analysis of BRIL instrumentation

Common

- + triggering (BRIL Trigger Board: generate unbiased triggers for TEPX & D4R1, BPTX signal to CMS Global Trigger)
- + readout back-end electronics (e.g., use Apollo and Serenity boards for BRIL luminosity systems)
- + histogramming module for all luminometers
- + data acquisition = BRILDAQ
	- + Read out and process luminosity histograms, monitoring and calibration data
		- + Luminosity data processed in ATCA back end with system-on-chip processors
		- + Read out via control network through gigabit Ethernet
			- + subsystems need to give sufficient bandwidth for (small) BRIL data volume
			- + work with DAQ group to define architecture
		- + Injected to BRILDAQ infrastructure
	- + Independent run control system
	- + Database providing all necessary information for physics analyses
- \Rightarrow More on common histogramming FW & BRILDAQ: J. Benitez 45

Summary of CMS Phase-2 strategy

- BRIL deliverables include
	- radiation and neutron monitoring (LHC Radmons, REMUS PMIs, GFPCs, Bonner-sphere neutron spectrometers),
	- beam instrumentation: abort (BCML) and timing (BPTX),
	- beam-induced background (BHM, EMTF, TEPX D4R1, FBCM) and luminosity measurements
- Aim to reach (2%) 1% precision on (real-time) ultimate luminosity measurement
	- Optimal exploitation of data from existing subsystems
		- TEPX and BRIL-operated D4R1 with pixel cluster and coincidence counting
		- Strip Tracker OT L6 twofold coincidence counting
		- Hadron Forward (HF) calorimeter with 2 algorithms
		- Muon Barrel (DT+RPC) backend and 40 MHz trigger scouting systems providing muon information
			- 40 MHz scouting extendable to track and calorimeter objects
	- Construction of a fully independent, always-on luminosity detector with asynchronous, s
	- This strategy enables CMS to have 3 (almost) ideal luminometers, and in total 5 independently calibrated bunch-by-bunch measurements, plus additional handles on stability and linearity using different detector technologies and counting methods with orthogonal systematics
- Rich network of collaborations with CMS subsystems, CMS technical coordination, CERN departments, and LHC-wide working groups, the paradigm of maximum commonality of HW/FW/SW components, reliance on proven technologies, and a natural evolution from Run 2 to Phase 2 will help to make these plans a reality

[https://cds.cern.ch/record/2272264](https://cds.cern.ch/record/2272264/files/CMS-TDR-014.pdf)

Silicon Pixel & Strip Tracker: 25xLHC readout channels

Inner Tracker: 4.9 m², 4000 modules

- ⊳ 2G hybrid micropixels of 25 μm x 100 μm
- n-in-p type Si sensors of 150 μm thickness (3D @ TBPX1)
- ⊳ C-ROC in CMOS 65 nm (CERN RD53): v1 under thorough tests

 $0.8 - 1.22$

⊳ Focus on module prototype tests, QC procedures

Outer Tracker: $190 + 25$ m², 13200 modules,

- 43M microstrips + 170M macropixels
- ⊳ Input to L1 trigger at 40 MHz

 Λ

Outer Tracker

- pT discrimination via hit correlation ("stubs") in sensors of double-sided modules
- ⊳ Flex hybrid to get data from both sensors to a single ASIC
- ⊳ Different sensor spacing for different detector regions + tunable correlation windows
- ⊳ Associate track to stubs from OT layers and extract track pT for triggering at L1
- Exploring possibility to reconstruct displaced tracks
- ⊳ OT in production mode: 30% of sensors produced, ASICs in production or ready for it, hybrid design completed

 $1 \div 4$ mm

Preparing extensive integration tests and test beams

four modules mounted successfully on a ladder, no significant change in leakage current levels and noise

Barrel calorimeter

- \triangleright $\,$ PbWO $_{\rm 4}$ crystals and Avalanche Photodiodes (APDs) kept
- \triangleright FE electronics to be replaced
	- ▶ 30 ps time resolution for 30 GeV e/ γ
	- ▶ Single crystal readout (instead of 5x5) at 40 MHz (no latency)
	- ▶ New Very Front End (VFE) removes spikes (anomalous signals due to particles hitting the APD directly)
- \rightarrow 9 C operating temperature (from 18 C) to mitigate APD aging / radiation damage

60 [PS]

50

40

 \rightarrow APD vs MCP1

APD vs MCP2

APD vs averaged MCPs

R٥

resolution

 20_{ps}

- \rightarrow 2021 Oct testbeam with prototype electronics: good linearity, E and time resolutions
- ▶ VFE ASICs (CATIA v2 & LiTE-DTU v2) pre-production: good performance, last design modifications done
- ▶ HCAL new BE, common with ECAL

<https://cds.cern.ch/record/2283189>

Muon detectors

- \triangleright Existing DT, CSC, RPC detectors with upgraded electronics
	- \rightarrow cope with \sim 10x higher rates and improve performance
	- \rightarrow improve RPC trigger hit time resolution from 25 ns to 1.5 ns
- \triangleright New detectors in challenging (high rate, high background) forward region
	- \triangleright increase redundancy and extend coverage to $|\eta| = 2.4 2.8$
	- \rightarrow enhance tracking performance
	- \rightarrow allow bending angle measurement at trigger level
- Gas Electron Multiplier chambers
	- \triangleright GE1/1 (LS2), GE2/1 (2024/25 & 2023/24 (E)YETS): 50+100 m² of 2-layer triple-GEM
	- \triangleright ME0 (LS3): 60 m² of 6-layer triple-GEM
- ▶ Improved RPC
	- ▶ RE3/1, RE4/1 (2024/25 EYETS)

Posters by S. Mohamed, M.R. Kim P and P a

Muon detectors: first stage completed in LS2

- ⊳ GE1/1 installed (2x36 SCs of 2 triple-GEMs), good performance in 2021 Oct beam test
- ⊳ One slice of endcap equipped with new GE2/1, RE3/1, RE4/1 chambers
- ⊳ CSC on-detector electronics upgraded

Phase-2 on-board electronics

New Phase-2

LHC details

LHC operations

- ▸ Bunched beams accelerated by RF cavities
- \cdot f_{RF} synchronised to movement of bunches (LHC: f_{RF} = 400.8 MHz @ full energy)
	- **Longitudinal focusing**
	- LHC: 3-4.5 cm bunch length
- Dipole magnets keep particles on \sim circular orbit with alternating arcs and straight sections
- ▸ Quadrupole magnets focus the bunches to tiny cross-sections
	- LHC: 10-16 μm in transverse bunch size
- LHC parameters
	- ▸ 3564 bunch locations spaced by 7.5 m (every 10th RF bucket)
	- Collisions at every $10/f_{\text{RF}} \sim 25 \text{ ns}$
	- \cdot 1 orbit takes 1/f_{rev} = 1/11245 Hz ≈ 90 µs

LHC ring & beam instrumentation

- ▸ Insertion Regions (IR) at straight sections (~528 m)
- ▸ Injection from the SPS at 450 GeV beam energy close to IR2 (ALICE) and IR8 (LHCb)
- ▸ Acceleration by RF cavities around IR4 to reach collision energy (13.6 TeV in Run 3)
- Beam collimation at IR3 and IR7
- ▸ Collisions at 4 Interaction Points (IP1: ATLAS, IP2: ALICE, IP5: CMS, IP8: LHCb)
- ▸ Beam dump system at IR6
- ▸ Arcs equipped by superconducting magnets to bend, focus, and correct the orbits of the beams

The LHC filling cycle

Complex sequence of actions to fill the LHC and prepare for stable collisions takes >1 hour

RF frequencies of two beams locked

Filling scheme with bunch trains (an example)

- ▸ 72 bunches from PS to SPS in one go \rightarrow bunch trains
- ▸ Variable spacing to accommodate rise times of injection and extraction magnets ("kickers") in PS, SPS and LHC
- ▸ Empty bunches also useful to determine beam backgrounds, pile-up and detector noise
- ▸ Unique numbering scheme: Bunch Crossing IDentifier (BCID)
- ▸ LHC can run with a large variety of filling schemes

Bunch intensity measurements (N_1, N_2)

- ▶ DC Current Transformers (DCCT) / Beam Current Transformer - DC (BCTDC): Total charge per beam including bunched and unbunched charges
- ▶ Fast Beam Current Transformers (FBCT), a wall current transformer: Relative bunch intensities including charges outside the filled bucket (satellites), but not to the unfilled bunches (ghosts) due to bunch charge limit
- ▶ Beam Quality Monitors (BQM), a wall current monitor designed to measure longitudinal bunch parameters such as bunch length and phase: sum of 20 samples of (uncalibrated) intensity per filled bucket (i.e. not affected by satellites)
- ▶ Longitudinal Density Monitors (LDM) / Beam Synchrotron Radiation - Longitudinal (BSRL): Longitudinal beam profile to determine satellite and ghost charges with a time resolution of 90 ps (integrated over 5 minutes)
- ▶ IP8 beam gas imaging (BGI): Ghost charges by comparing rates for empty - empty and empty - filled bunch crossings

