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Outline

Physics motivation: test of the Standard Model 

Methodology

Attacking the leading uncertainties

- Understanding beam-beam interactions
- Improved techniques for precision calibration - highlights

- Orbit movements
- Transverse non-factorization of the beam particle density  
- Z boson counting

Luminosity instrumentation and the CMS phase-2 detector upgrade 
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Luminosity

▸ Quantifies interaction rate at colliders
▸ Time-dependent “instantaneous” luminosity: 

RX(t) = L(t) ∙ σX 
▸ Feedback to accelerator, detector operation

▸ Integrated luminosity over time: Lint = ∫L(t)dt
▸ Necessary to normalize physics measurements to derive cross sections

▸ Bunches can be different: 
single bunch instantaneous luminosity (SBIL): Lb(t) 

▸ max. ~ 7 Hz/μb = 7 ∙ 1030 cm-2s-1

▸ Multiple interactions per bunch 
crossing 
▸ Event pile up ~ 50
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max. L(t) ~ 2 ∙ 1034 cm-2s-1



How luminosity affects LHC program?
Test of the Standard Model

- precise cross sections (σ) measurements
- compare to model predictions and other experiments

Quest for New Physics beyond the Standard Model 
- discovery → measure σ
- no signal → put limit on maximal σ allowed by the results

LHC physics goals require a precision around ~1%

▸ Real-time (online) 2-5% bunch-by-bunch (BbB) measurement
▸ Assist beam optimisation, luminosity levelling
▸ Optimisation of detector operations, e.g. fast online “trigger” 

selection
▸ Ultimate 1% with final calibration and corrections offline

▸ Luminosity uncertainty still dominant in key channels of physics 
interest (e.g., Drell-Yan, top quark pair, and Higgs studies)

▸ … but subdominant in most analyses

Final (“precision”) uncertainty / year:   1.6% (2015), 1.2% (2016)
Current preliminary uncertainty / year: 2.3% (2017), 2.5% (2018), 1.4% (2022)
Run 2 (2015-2018) preliminary combined: 1.6%
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Impact of luminosity precision
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JHEP 12 (2019) 061

Phys.Rev.D 102 (2020) 9, 092012

JHEP 08 (2023) 204
1.21 fb-1 (13.6 TeV)

Phys.Rev.D 104 (2021) 9, 092013

Polarized W production cross section

Z production cross section

Top quark pair production cross section

(<1.5%)



Drell-Yan lepton pair production at HL-LHC

Assuming Run-2 systematics for other experimental contributions
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2.5% 
1.0%

Assumed 
luminosity 
uncertainty

CERN-LHCC-2021-008 

Better 
constraints on 
higher order 
calculations, 
parton 
distribution 
functions



Top quark pair production at HL-LHC

Two scenarios considered for other experimental uncertainties
▸ Run 2 → total uncertainty on cross-section excluding luminosity: 3.1%
▸ Phase 2 performance with improved lepton ID (0.5%/lepton), top pT modelling (⅓), jet 

energy scale (~½), other (½) → total uncert. excluding luminosity: 1.5%

Phase 2 performance scenario

               Production cross-section                               Top quark pole mass & strong coupling constant 

7

Run-2 analysis performance

Improved Phase-2 performance

CERN-LHCC-2021-008 



Higgs boson properties at HL-LC
Phase 2 scenario with improved detector performance
Assuming target 1% luminosity precision reached

In the most precisely 
measured Higgs boson 
production process, gluon 
fusion (ggH), luminosity 
uncertainty will dominate 
the experimental 
uncertainty at HL-LHC 
even with the target 1% 
precision and will remain 
significant even when 
including the expected 
theoretical uncertainties
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includes theory & 
data statistics

Data statistical uncertainties in cross sections 0.8% (ggH), 2.6% (VBF), 4.6% (WH), 3.9% (ZH), 1.8% (ttH), 
in coupling modifier parameters ~1%

CERN-LHCC-2021-008 



Luminosity measurement strategy     

Absolute calibration

▶ Identify luminometers with ~linear rates
▶ Convert measured rates to luminosity using 

a calibration constant: 
visible cross-section (σvis)

▶ Measure rate and luminosity in-situ from 
beam parameters in well-controlled 
environment: van der Meer (vdM) 
transverse beam-separation scans 
(well-separated bunches, PU<1)
→ derive visible cross-section

▶ Main challenge: corrections for various 
systematic effects

R(t) = dN / dt = ℒ(t) ∙ σ Integration over time and bunches

▶ Calculate “integrated” luminosity in 
physics conditions for a given time period:  
L = ∫R(t) dt  / σvis

→ stability of instrumentation in time
(aging, operating conditions,...)

▶ Extrapolation of σvis to physics conditions 
(PU up to 70 in Run 2/3, bunch trains) 

→ linearity of detector & counting method

▶ Out-of time effects (e.g., from activation of 
detector material, electronic time walk, 
late particles…)
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Luminometer calibration

Assumes transverse factorisation of bunch particle density 
distributions: 𝜌i(x,y) = 𝜌x,i(x) ∙ 𝜌y,1(y)

In a calibration fill optimised for best precision

- Measure head-on luminosity from beam parameters (L)
using Van-der-Meer (VdM) transverse beam separation 
scans (or beam - gas imaging in LHCb)

- Measure luminometer head-on rate (R0)
- Define the calibration constant as σvis = R0 / L 
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Bunch intensities Bunch particle density distributions 
in transverse plane

 f

Effective bunch overlap widths 
in x and y transverse directions

Luminosity from beam parameters for a single bunch crossing

Typical conditions in VdM fills
- low inst. luminosity & PU
- single, well-separated 

bunches (no trains!) to 
minimize long-range 
beam-beam interactions

- large transverse beam size
(large β*) w.r.t. vertex 
resolution 

- zero crossing angle 



▸ Rate for different transverse beam 
separations ∆x, ∆y for ±6σbeam in fine 
steps

▸ Bunch overlap widths Σx, Σy given by 
normalised integral

▸ Fit functions vary: g, g+g, poly×g, etc.
▸ Visible cross-section

 

▸ Ingredients to measure
▸ Bunch intensities N1, N2 
▸ Background affecting R0
▸ Length-scale & orbit movements 

affecting separation ∆x, ∆y, and thus 
Σx, Σy

▸ Non-factorisation of beam particle 
densities 𝜌1,2(x,y) 

▸ Beam-beam interactions affecting 
bunch shape and separation

σvis determination with vdM method 

R0

𝞢x

background
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Pixel cluster counts in zero bias data

BCID 41
rev

EPJC 81 (2021) 800

head-on

separated

Width ~ Integral / Peak:   Σx = ∫Rx(∆x)d(∆x) / (√2√π∙Rx(0))

Ry(∆y) Rx(∆x) 𝞢y



Luminosity uncertainties
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Provided by LHC beam instrumentation

https://indico.cern.ch/event/813285/contributions/3406074


Luminosity uncertainties
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Beam-beam (BB) interactions
Electromagnetic interaction between the charged particles of the beams 
→ all particles perturbed (only few collide!), trajectory change due to non-linear force:

- Affects beam separation: “beam-beam deflection”
- coherent effect on a bunch 
- estimated analytically using Bassetti–Erskine formula

- Distorts the bunch sizes, shapes: “optical” or “dynamic-beta” effect
- incoherent effect on single particles
- modifies bunch overlap area, thus measured rates in luminometers

- Also changes the betatron tunes (tune shift & spread: ΔQ∝ξ), causes particle 
losses, emittance blow up…

Model with multiparticle simulations:
B*B & COherent Multibunch Beam-beam Interaction (COMBI) 

After Run 2: large correction to previous calculation based on
linear approximation (lumi results before 2019 biased by ~1%) 
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betatron tune => # of transverse 
oscillations of a particle in one 
revolution around the ring (Qx=64.31, 
Qy=59.32 for pp at top energy)

BB parameter:

https://indico.cern.ch/event/813285/contributions/3406103


Beam-beam interactions
LHC working group (LLCMWG) effort 
→ correction scheme, uncertainty estimation prescription

Per-bunch input to calculate luminosity bias L/L0(Δ | ξR,qx,qy)  
- Luminometer based transverse bunch width (assuming round beams 

with equal sizes: σR
2 = ΣxΣy/2)

- Bunch intensity (assuming N = N1N2/2)
- Beam parameters: β*, Qx, Qy, Eb 
- Number of collisions per orbit 

(→ tune shift, effective fractional tunes qx, qy)

Uncertainties due to Qx, Qy, β*, non-Gaussian, 
non-round, non-equal sized & charged bunches…  

15

Eur. Phys. J C84 (2024) 17

Opposite 
effects of 
deflection & 
optical distortion 

Defocus

Focus

Non-
Gaussian
shape

CMS-PAS-LUM-22-001



Orbit drift from nominal position
▸ Measured by beam position monitors (BPMs)
▸ Correct nominal beam positions & separations (∆x, ∆y)
▸ “Arc” BPMs in LHC arcs adjacent to experiments

▸ Their data transformed to beam positions at the 
interaction points (IPs) using LHC optics model

▸ Diode Orbit and Oscillation (DOROS) BPMs at Q1 triplet 
quadrupoles 21.5 m from the IP 

▸ Average Beam 1 & Beam 2 orbit tracked by the 
movements of the luminous region (“beam spot”) at the 
IPs via reconstructed vertex positions by the tracking 
detectors

▸ All orbit measurements are integrated over all bunches
▸ Orbit drifts have many origins, e.g.,

▸ Beam-beam deflection (affects separated colliding 
bunches)

▸ Magnetic non-linearities (systematic “hysteresis”)
▸ Slow “random” orbit drifts (assumed to be linear between 

head-on measurements before 
and after scans)

▸ Orbit jitters (instabilities with few 
10s of seconds characteristic time)  16

Measured linear orbit drift wrt. nominal orbit during head-on collisions 
(before, in the middle, and after scans)

→arc

DOROS

arc

DOROS

EPJC 81 (2021) 800

1 scan step 
= 60 s

Measured orbit drift wrt. 
nominal orbit per second 

LHC BPM data

DOROS

arc



“Residual” orbit drifts and magnetic non-linearities
Systematic residual orbit drifts observed in BPM data:

Residual = BPM - α∙Nominal 
                            - β∙BBdeflection 
                            - linearOD 

- BPM length scale (α) wrt LHC nominal positions from 
corrector magnet currents
- Beam-beam deflection corrected by a geometric factor to 
account for the BPM distance from the IP and scaled (β) to 
account for non-colliding bunches and BPM instrumental 
effects

Possible source: magnetic non-linearities
- All experiments observe similar effects
- Dedicated measurements performed in Run 3 and by 
magnet experts in the lab (CERN-ACC-NOTE-2022-0013) 
showing consistent results  
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Residual y position 
differences per beam

Residual separation 
corrections in y

EPJC 81 (2021) 800

vdM (1)

Correction improves consistency of measured 
visible cross section values from scan to scan

CMS-PAS-LUM-22-001

EPJC 81 (2021) 800



Transverse length scale (LS) calibration
▸ Scale factor between nominal displacement from 

LHC dipole corrector magnet currents to actual 
displacement in tracker reference frame using 
luminous region (beamspot) position from 
reconstructed vertices 

▸ Special scans performed to move the beamspot 
position
▸ Beams moved together in equidistant steps 

with constant (non-zero) beam separation to 
measure average B1&B2 LS
▸ Fast, allows to measure back & forth

▸ One beam moved in equidistant steps with 
the other beam performing 3-step mini-scans 
around it to determine the head on position,  
having thus variable beam separation during 
the scan
▸ Provides per beam LS  

▸ Main difficulty: orbit drift (OD) during the scans 
18

CMS-PAS-LUM-18-002 
 

Adjusts Σx, Σy 

OD correction:
- Correct nominal positions using 

beam position monitor (BPM) data
- BPM length scale enters
- Few steps, possible large effect of 

“random” shifts / jumps

LS correction can reach -1%  
Typical uncertainty 0.2-0.3%



Transverse beam particle density factorisation
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▶ Even with beam tailoring in the LHC injection chain, the VdM assumption of 
𝜌i(x,y) = 𝜌x,i(x) ∙ 𝜌y,1(y) not exact

▶ Various methods developed to measure the effect and derive bunch shapes 
using reconstructed vertex position distributions
▶ Beam imaging using a special scan with a stationary beam scanned by the other
▶ Luminous region analysis exploiting the 3D beam spot reconstruction (position, 

widths, tilts) and vdM rates - does not need dedicated scan, “continuous” monitoring

Simultaneous fit of the 4 scans 
to determine the bunch shapes 
(G1 + G2 - G3 model)

VdM rate                 LR position

LR width x                LR width y

- Good agreement between 
  methods
- Time dependence observed
- Vertex data available only for 
  small number of bunches

EPJC 81 (2021) 800



Transverse beam overlap shape factorisation
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▸ Factorisation effects can change from bunch to bunch (& in time)
▸ Study directly the overlap area from luminometer rates
▸ Simultaneous analysis of VdM & offset/diagonal scans 

▸ Similar to LHCb pioneered 2D scan analysis
▸ Orbit drifts during extended data taking need to be controlled
▸ Applicable in PbPb collisions where beam size similar to vertex resolution

▸ First evidence for bunch family dependence (PS Booster ring, number of colliding IPs)

CMS-PAS-LUM-18-001

PbPb

CMS-PAS-LUM-22-001



Probing uncorrected / unknown effects 
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Luminosity cross-detector comparison 
in non-scanning periods of a vdM fill

Bunch-by-bunch and scan-to-scan 
variation of calibration constant

Essential to have several, independently calibrated 
luminometer to check for unknown instrumental biases

Measures beam-dependent
uncorrected effects

CMS-PAS-LUM-22-001



Luminometers in CMS
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RAMSES

Rate-scaling:
HFET, PCC
DT, RAMSES
Zero-counting:
BCM1F, HFOC, PLT 

Pixel clusters

PLT: 3-fold coincidences 
       in Si pixel telescope
BCM1F: hits on Si pads

HFOC: Hit towers (occupancy)
HFET: sum(ET)

REMUS 
(RAMSES):
Ambient 
dose 
equivalent 
rate (orbit 
integrated)

Muon Drift Tubes (DT): 
L1 trigger primitives
(stubs, orbit integrated)

Phase-2 DT & 
40 MHz scouting 
demonstrator 
systems in Run 3 

6 independently 
calibrated, 
bunch-by-bunch 
luminometer 
using varied 
technologies + 2 
orbit-integrated 
reference 
systems



Time-dependent
(updated every 
≈20 mins)

Large correction 
for next bunch

Long “activation” tail

PCC

Luminosity uncertainties
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Emittance scans: mini-vdM scans in physics fills
▸ Fast luminosity scans with small ~3σb maximum separation 

with 7-15 points of 10 s each
▸ Less precise than VdM scans due to uncorrected biases, 

used for relative measurements in similar conditions
▸ Study time dependence of luminometer response → 

efficiency monitoring
▸ Different SBILs from bunch to bunch and at start and end of 

fill → measure (non-)linearity
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Luminosity burn-off
Mini head-on 
optimisation 
scans 

One point on the plot 
corresponds to one BCID



Integration systematics: stability & linearity
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Compare independently calibrated luminometer measurements

Slope of L(det)/L(ref) vs. L(ref)

L(det)/L(ref) First, each BbB luminometer 
- independently vdM calibrated
- corrected for out-of-time effects
- linearity and efficiency 
monitored & corrected using 
short vdM-like “emittance” scans

Majority rules

Mostly BCM1FuTCA/HFET

Typical stability uncertainty: 0.5-0.6% Typical linearity uncertainty: 0.5%

CMS-PAS-LUM-22-001

https://cds.cern.ch/record/2890833


Z counting for luminosity integration - Self-calibrating measurement 
  (muon efficiency from same data)
- σ(NhighPU/NlowPU) = 0.5% in 2017
- Need close-by vdM calibration at least 
  once for each collision energy with 
  few 100 pb-1 low PU data
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Z→μμ count in-situ muon 
efficiency

Z counting linear with reference luminosity

Stability

10.1140/epjc/s10052-023-12268-2

https://doi.org/10.1140/epjc/s10052-023-12268-2


Luminosity uncertainties
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Getting close to 
target precision 
of 1%

State-of-the-art in 2018 
at the end of Run 2 
~2.5%

~ factor 2
improvement!



HL-LHC schedule and challenges

Challenges
▶ High-radiation environment: replace tracker & endcap calorimeter
▶ High pileup up to ‹μ›=140-200, high particle multiplicity: improve 

granularity, use timing information
▶ Extended physics reach: enlarged acceptance in |η|
▶ High data rate: upgrade trigger and DAQ

Goal: ~15-20x more data 
          than recorded so far

28
   2010                  2015                       2022            2026     2029               2035             2040

2y

A possible schedule of HL-LHC
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 The CMS Phase-2 Upgrade   

Tracker https://cds.cern.ch/record/2272264
• Si-Strip and Pixels increased granularity
• Extended coverage to η ≃ 4
• Design for tracking in L1 Trigger

Level-1 Trigger  
https://cds.cern.ch/record/2714892
• Tracks in L1 Trigger at 40 MHz 
• Particle Flow selection 
• 750 kHz L1 output 
• 40 MHz data scouting

High-Granularity Calorimeter 
Endcap
https://cds.cern.ch/record/2293646 
• 3D showers and precise timing
• Si, Scint+SiPM in Pb/Cu-W/SS

Barrel Calorimeters 
https://cds.cern.ch/record/2283187
• ECAL single crystal granularity readout at 40 MHz 

with precise 30 ps timing for e/γ at 30 GeV
• Spike rejection
• ECAL and HCAL new Back-End boards 

Beam Radiation Instrumentation and Luminosity
http://cds.cern.ch/record/2759074
• Beam abort & timing
• Beam-induced background
• Bunch-by-bunch luminosity: 1% offline, 2% online
• Neutron and mixed-field radiation monitors

MIP Timing Detector 
https://cds.cern.ch/record/2667167
Precision timing with:

• Full coverage  to η ≃ 3
• 30-50 ps time resolution for MIPs
• Barrel layer: Crystals + SiPMs
• Endcap layer: Low Gain Avalanche Diodes

Muon systems
https://cds.cern.ch/record/2283189
• DT & CSC new FE/BE readout 
• RPC BE electronics
• New GEM/RPC 1.6 < η < 2.4
• Extended coverage to η ≃ 3

DAQ & High-Level Trigger 
https://cds.cern.ch/record/2759072
• Full optical readout
• Heterogenous architecture
• 60 TB/s event network
• 7.5 kHz HLT output

Approved in 2022

14 technical systems 
SS: stainless steel, FE: front end, BE: back end, 
MIP: minimum ionizing particle, 
SiPM: Silicon Photomultiplier

https://cds.cern.ch/record/2272264/files/CMS-TDR-014.pdf
https://cds.cern.ch/record/2714892
https://cds.cern.ch/record/2293646
https://cds.cern.ch/record/2283187
http://cds.cern.ch/record/2759074
https://cds.cern.ch/record/2667167
https://cds.cern.ch/record/2283189
https://cds.cern.ch/record/2759072


Main features of CMS Phase-2 upgrade

⊳ New silicon pixel and strip tracker with higher granularity and larger 
coverage (|η|<4)

⊳ New “imaging” high-granularity endcap calorimeter
⊳ Extended muon coverage in forward region (|η|<2.8), new 

high-granularity GEM detectors
⊳ Precision timing by dedicated MIP timing detectors with 30-50 ps 

resolution (|η|<3) supplemented 
by improved timing information from muon detectors and calorimeters

⊳ Upgraded electronics with higher bandwidth

⊳ Fully reconstructed pT > 2 GeV tracks & particle-flow at level-1 trigger, 
increased rate (750 kHz) and latency (12.5 μs), 40 MHz scouting

⊳ High-level trigger with heterogeneous architecture,7.5 kHz output rate*[1]

Upgrade in full swing, first full phase-2 detector installed 
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Luminosity measurement at HL-LHC
▸ 1% target precision for integrated luminosity per year in very 

demanding conditions
▸ event pile-up up to 140-200 at 40 MHz
▸ 10 years of data taking to collect >3000 fb-1 data

▸ neutron fluences ~1016 cm-2 in forward pixel tracker
▸ total ionizing dose ~107 Gy

▸ Measure pileup distributions, i.e. bunch-by-bunch luminosity for 
simulation 

▸ Real-time feedback with ~2% precision for luminosity levelling 
▸ from 17 to (5-7.5) ⋅ 1034 cm-2s-1 with β*, crossing angle, beam 

separation adjustments

▸ Manage non-linearity inherent in every luminometer, as well as 
train effects
▸ extrapolating current luminometer linearity performance to 

HL-LHC → 2-3% uncertainty
▸ Minimize long-term efficiency loss using radiation hard 

instrumentation
▸ Understand the beam properties with improved instrumentation

31
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  TEPX real-time clustering 
  BRIL Trigger Board 

Pillars of luminometry
1. Consumer of CMS subsystem data 

(much like the trigger)

2. Dedicated BbB luminometer: FBCM
▸ Independent, under full control of BRIL

▸ Luminosity & BIB outside stable beams

▸ Simple, reliable, high precision
▸ Unique asynchronous / sub-BX timing 

capabilities
▸ Time structure of beams
▸ Orthogonal systematics

▸ Proven technology (Run-2 BCM1F)

▸ Pragmatic, reuses existing components, 
while new ones, especially FE ASIC is 
designed to fulfil only BRIL requirements

3. Principle of maximum commonality
▸ Histogramming firmware for subsystem 

backends
▸ Run control and data acquisition, 

independent of CMS

Robust system of diverse technologies and 
counting methods with different systematics

 Histogramming firmware 

BRIL SUBSYSTEMS 
for bunch-by-bunch Phase-2 luminometry

 BRILDAQ

CERN-LHCC-2021-008 



Luminosity architecture
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Clock signal to 
BRIL systems,  
special scheme 
for independent 
operation of 
D4R1 & FBCM 

Trigger 
generation for 
TEPX (D4R1)

Encode BPTX 
Beam 1 & 2 
discriminated 
signal for GT

BRIL data acquisition
      Run control, histo data readout /
      processing / sharing 

Histogramming firmware installed at subsystem back ends

Scouting HW with 
histogramming FW installed 

Data processing for 
TEPX, D4R1 & FBCM
[separate crates for 
beam 1 & beam 2 
for D4R1 & FBCM on 
different clocks]

BE: back end
BPTX: Beam Pickup Timing Experiment
BTB: BRIL Trigger Board

DTH: DAQ and Timing Hub
DTC: Data, Trigger and Control board

GT: Global Trigger
IT: Inner Tracker
L1: Level-1 trigger

TB2S: Tracker Barrel 2-Strip detector
TCDS2:  Phase-2 Trigger and Timing 
Control and Distribution SystemUpdated from 

CERN-LHCC-2021-008 



Tracker Luminosity
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Tracker Endcap Pixel Detector
▸ Real-time Pixel Cluster Counting (PCC) on 2 m2 of Si @ 75 kHz

▸ 2- & 3-fold coincidence counting for calibration & monitoring

▸ Data split in pixel back end, luminosity events sent to dedicated 
processor board for real time cluster reconstruction and counting

Disk 4 Ring 1

▸ Fully independent (including services), operated by BRIL

▸ Always on → provides beam-induced background and luminosity
measurements during machine development, commissioning, filling cycle incl. ramping 

▸ Full trigger bandwidth for BRIL: 825 kHz at PU200, 2-4 MHz at low PU
Outer Tracker Layer 6 - best statistical power
▸ Histogramming instances at OT back end count stubs from 12 modules each at 40 MHz 

during stable beams using dynamical error handling 

BRIL Trigger Board

▸ Clocking infrastructure for FBCM / D4R1 

▸ Unbiased luminosity triggers for TEPX / D4R1

▸ Forwards beam 1 and beam 2 signals from Beam Pickup Timing Experiment (BPTX) 
To Global Trigger (GT)

OT L6

D4R1

D4R1

TEPX



Fast Beam Conditions Monitor (FBCM)
▸ Stand-alone luminometer under full control of BRIL

▸ Independent of CMS services (DAQ, TCDS, run control, magnet status)

▸ Available outside stable beams (additional safety, e.g. tracker high voltage interlock)

▸ Inspired by Run 2 BCM1F concept: based on Si-pad sensors with fast front-end ASIC 

▸ Adapting Phase-2 Inner Tracker (IT) electronics components  

▸ Triggerless readout with sub-BX timing to study time structure of beams and beam-induced background

▸ 288 Si-pad sensors of 2.89 mm2 at r = 14.5 cm arranged on 4 half-disks, with modular design

▸ Two option for sensors: 290 um 2-pad (Run-3 BCM1F) or 150 um 6-pad (lower S/N,

more rad hard, common GND ring to limit sensitive volume, produced on IT wafers)

▸ Location behind Disk 4 of the TEPX in the Tracker cold volume

▸ Good statistical precision, excellent linearity, no significant degradation with aging

35
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No radiation (USC counting room)High radiation (inside of the CMS detector)

ATCA
24 fibers
(1 MFB) ATCA blade

Apollo

ASIC

Si
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. .
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6 eLinks

ASIC
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. .
 

.

6 eLinks

ASIC

Si
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6 eLinks
6 
fibers

18 eLinks

VTRx+lpGBT
6

Hybrid port card

VTRx+lpGBT
6

VTRx+lpGBT
6

1

6

1

6

1

6

Front-end module 
Back-end

x4  = one FBCM half-disk 
Example (Run3 data) of the aggregated per bunch 
crossing histogram as expected to be read out from 
Apollo System-on-chip to BRIL DAQ in Run 4

2.8 m

CERN-LHCC-2021-008 



Fast Beam Condition Monitor design

CF Honeycomb 

K9 thermal foam
around cooling pipe

Threaded insert

❏ 2x2 identical half disks at 2.8 m from IP with 12 modules each 

❏ Mechanics follows CMS inner tracker design (materials, manufacturing, vendors) 

with minor modifications

❏ Independent, dedicated BRIL ring connected to the Tracker Endcap Pixel (TEPX) 

detector cooling manifold

36

Front-end module

2.8 m

Mechanical 
mockup

 CF: carbon fiberarXiV: 2402.03971 

https://arxiv.org/abs/2402.03971


FBCM half-disk
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3 thermally optimised 
front-end modules 
per service quadrant

4 identical service boards 
with 1 DC-DC and 1 IT portcard

Kapton 
flex tail 
for LV-HV

IT portcard with 3 e-links

service board

DC-DC converter 
(12 V → 1.25V)

6 Si-pad 
sensors

front-end 
6-channel 
ASIC

Front-end HV
connector

DC-DC LV 
connector

front-end 
flex-rigidh
ybrid

AlN ceramic baseplate 
with metalization for HV 
contact

Signal 
connector

LV: low voltage, HV: high voltage, 
bPol12V: CERN-developed DC-DC 
converter, 
AlN: Aluminum-Nitrid

❏ 6-channel ASIC optimised for fast time 
response & low noise, qualified to place 
production order 

❏ Service boards at higher radius provide 
power, control, and read out for 3 
front-end modules each

Exchangeable 
pitch adapter

JINST 19 (2024) 02, C02026

arXiV: 2402.03971 

https://arxiv.org/abs/2402.03971


FBCM read out
2) FBCM23 front-end ASIC
- 65 nm, radiation hard
- 3x3 mm2, wire-bonded
- 6 channels, SLVS output
- Triggerless asynchronous read out
- Electronic noise < 800 e- ENC
- Adjustable peaking time (4-8 ns) 
- Timewalk below 5 ns
- Linearity up to 6 fC
- Fast amplifier and comparator

- Fast return to baseline after hit 
with multiple MIPs (150 fC)

- Double-hit resolution after 
discrimination 25 ns

- Expected dose 200 Mrad, 
fluence 2.5∙1015 neq/cm2 

- SEU-protected I2C register block
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SLVS = Scalable Low-Voltage Signal
SEU = Single Event Upset (bitflip) 
lpGBT = Low Power GigaBit Transceiver
VTRx+ = Versatile Link Plus Transceiver

1) Si-pad sensors, n-on-p
Send analog LV signal pulse via short, 
low-capacitance bonds 

3) IT portcard 
lpGBT transceiver samples binary signal, packs into frames, 
and outputs via VTRx+ electro-optical interface

4) ATCA-standard back-end 
Apollo FPGA board
- Unpacks data
- Measures ToA and ToT 
- Aggregates data to 
  sub-bunch-crossing histograms  

(780 ps)

First test beam measurement in April



Capabilities of Phase-2 luminometers
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Chapter 5 of the BRIL Phase-2 TDR

Orthogonal instrumentation systematics!

http://cds.cern.ch/record/2759074


Precision luminosity determination
… required by EW and top physics at (HL-)LHC
… challenging (and a lot of fun!)
… necessitates

- good understanding of beam physics 10.1140/epjc/s10052-023-12192-5

- excellent quality of beam instrumentation to determine bunch intensity & shape, orbit position, etc. 
- luminometer data quality rigorously monitored (development of machine learning based tools, e.g. for 

CMS Pixel Luminosity Telescope (PLT) 10.1140/epjc/s10052-023-11713-6 

- refined techniques to calculate corrections for the absolute calibration of the luminometer visible cross 
sections 10.1140/epjc/s10052-021-09538-2 CMS-PAS-LUM-22-001 10.1140/epjc/s10052-023-12268-2 

The requirements at HL-LHC even more severe CERN-BE-2022-001 CERN-LHCC-2021-008 

→ development of dedicated luminometer, FBCM (incl. ELTE, Uni Debrecen) arXiV: 2402.03971 

→ adaptation of various CMS sub-systems for lumonimetry
The goal of 1% luminosity precision at HL-LHC is challenging 

but in our reach 
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DC-DC bPOL12V front

testboard

https://doi.org/10.1140/epjc/s10052-023-12192-5
https://doi.org/10.1140/epjc/s10052-023-11713-6
https://doi.org/10.1140/epjc/s10052-021-09538-2
https://cds.cern.ch/record/2890833
https://doi.org/10.1140/epjc/s10052-023-12268-2
https://cds.cern.ch/record/2802720
https://cds.cern.ch/record/2759074?ln=en
https://arxiv.org/abs/2402.03971


Extra
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Beam Radiation, Instrumentation and Luminosity project
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Upgrade BE electronics
(following HCAL) 

Upgrade BE electronics (SY/BI)
Regular sensor replacements 

New 

New
New

Follow HCAL
BE electronics

Follow 
HSE/RP

More 
monitors

Follow
EN/STI

Upgrade BE
New pickup 

(SY/BI)  

Follow Muon 
BE electronics 

to full BbB

Upgrade to 
full system 

New

New

BRIL Trigger Board (BTB)
● Generates independent 

luminosity triggers
● Encodes beam 1 & 2 

discriminated signals from 
BPTX for Global Trigger

● Generates TCDS2-like 
control stream based on 
LHC clock for D4R1 and 
FBCM 

15 technical systems for radiation monitoring, beam timing and abort, 
beam-induced background, and luminosity measurements

Upgrade FE electronics

BRIL Data Acquisition  
(BRILDAQ)
● Independent run control
● Read out and process 

luminosity histograms, 
calibration and 
monitoring data

● Share data real-time
● Database of BRIL 

information for physics 

Architecture design with CMS DAQ
Follow evolution of XDAQ platform

New

Link to TDR 

New 

https://cds.cern.ch/record/2759074/files/CMS-TDR-023.pdf


Histogramming and BRIL DAQ
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Data formatting

Agregation to 
lumi channels 

Histogramming

Detector per time 
bin per channel 
- Count increment 

(e.g. #objects / 
Σenergy) 

- Error flag(s) from 
FE, BE

   Configuration parameters
- Integration time (#orbits)
- Counter size (#bits)
- Time bins (#bins / 25 ns)

TCDS 
- Clock
- Reset
- Metadata per 

integration period
- Fill
- Run
- Lumi section (LS)
- Lumi word

+ Header + Mask 
+ Error counter
+ Orbit counter 

IPBus
TCP
ScDAQ

B
R
I
L
D
A
Q
  
E
V
E
N
T
I
N
G  

B
U
S

XDAQ source 
application 

XDAQ 
processor 
application

Detector back end
(data source)

LHC

CMS

BRIL

Storage
Data source: reading histograms from hardware memory, publishing to XDAQ b2in eventing
Data processor: local data aggregation, plotting & storing of histograms

XDAQ 
processor 
application

XDAQ 
processor 
application

BRILDAQ: 
publisher / 
subscriber model 

Detec
tor 

spec
ific

Common 

(syn
c or

 asy
nc)



Luminometry 
from Run 2 
to Phase 2

Natural progression from Run 2
➢ Successful construction of two 

detectors during LS2
➢ Participation in Run 3 

demonstrator systems with 
Phase-2 histogramming 
firmware

➢ Semi-online PCC in Run 3
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Central paradigm: maximum commonality
Since conception of BRIL, strengthen the use of common components in data acquisition and 
analysis of BRIL instrumentation
Common 
+ triggering (BRIL Trigger Board: generate unbiased triggers for TEPX & D4R1, BPTX signal to CMS Global Trigger)

+ readout back-end electronics (e.g., use Apollo and Serenity boards for BRIL luminosity systems)

+ histogramming module for all luminometers
+ data acquisition = BRILDAQ

+ Read out and process luminosity histograms, monitoring and calibration data
+ Luminosity data processed in ATCA back end with system-on-chip processors
+ Read out via control network through gigabit Ethernet

+ subsystems need to give sufficient bandwidth for (small) BRIL data volume

+ work with DAQ group to define architecture

+ Injected to BRILDAQ infrastructure
+ Independent run control system
+ Database providing all necessary information for physics analyses

45⇰ More on common histogramming FW & BRILDAQ: J. Benitez



Summary of CMS Phase-2 strategy
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• BRIL deliverables include 
• radiation and neutron monitoring (LHC Radmons, REMUS PMIs, GFPCs, Bonner-sphere neutron spectrometers), 
• beam instrumentation: abort (BCML) and timing (BPTX),  
• beam-induced background (BHM, EMTF, TEPX D4R1, FBCM) and luminosity measurements 

• Aim to reach (2%) 1% precision on (real-time) ultimate luminosity measurement 
• Optimal exploitation of data from existing subsystems 

• TEPX and BRIL-operated D4R1 with pixel cluster and coincidence counting
• Strip Tracker OT L6 twofold coincidence counting
• Hadron Forward (HF) calorimeter with 2 algorithms
• Muon Barrel (DT+RPC) backend and 40 MHz trigger scouting 

systems providing muon information
• 40 MHz scouting extendable to track and calorimeter objects

• Construction of a fully independent, always-on luminosity detector with asynchronous, sub-BX timing: FBCM
• This strategy enables CMS to have 3 (almost) ideal luminometers, and in total 5 independently calibrated 

bunch-by-bunch measurements, plus additional handles on stability and linearity using different detector 
technologies and counting methods with orthogonal systematics

• Rich network of collaborations with CMS subsystems, CMS technical coordination, CERN departments, and LHC-wide 
working groups, the paradigm of maximum commonality of HW/FW/SW components, reliance on proven 
technologies, and a natural evolution from Run 2 to Phase 2 will help to make these plans a reality



Silicon Pixel & Strip Tracker: 25xLHC readout channels

Inner Tracker: 4.9 m2, 4000 modules
⊳ 2G hybrid micropixels of 25 μm x 100 μm
⊳ n-in-p type Si sensors of 150 μm thickness (3D @ TBPX1)
⊳ C-ROC in CMOS 65 nm (CERN RD53): v1 under thorough tests
⊳ Focus on module prototype tests, QC procedures

Outer Tracker: 190 + 25 m2, 13200 modules, 
⊳ 43M microstrips + 170M macropixels 
⊳ Input to L1 trigger at 40 MHz
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Material x 1/2

IT
OT

10x more radiation hard

TBPX       TFPX          
          

 TEPX

TBPS Layer 1 

Pixel 
module

Higher coverage of pixel detector to |η|<4 

Presentation by S.M. Beolé

https://cds.cern.ch/record/2272264

https://cds.cern.ch/record/2272264/files/CMS-TDR-014.pdf


Outer Tracker
⊳ pT discrimination via hit correlation (“stubs”)

in sensors of double-sided modules
⊳ Flex hybrid to get data from both sensors to

a single ASIC
⊳ Different sensor spacing for different detector 

regions + tunable correlation windows
⊳ Associate track to stubs from OT layers and 

extract track pT for triggering at L1
⊳ Exploring possibility to reconstruct displaced tracks
⊳ OT in production mode: 30% of sensors produced, ASICs in production 

or ready for it, hybrid design completed
⊳ Preparing extensive integration tests and test beams 
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5 x 10 cm2

2 strip + 1 pixel sensors
960 x 2.5 cm x 100 μm strips
960 x 32 x 1.5 mm x 100 μm pixels
spacing: 1.6 / 2.6 / 4 mm

10 x 10 cm2

2 sensors / side
5 cm x 90 μm strips
spacing: 1.8 / 4 mm

Four modules mounted successfully on a ladder, no significant change in leakage 
current levels and noise

pT modules



Barrel calorimeter
▶ PbWO4 crystals and Avalanche Photodiodes (APDs) kept
▶ FE electronics to be replaced

▶ 30 ps time resolution for 30 GeV e/𝛾
▶ Single crystal readout (instead of 5x5) 

at 40 MHz (no latency)
▶ New Very Front End (VFE) removes spikes 

(anomalous signals due to particles hitting the APD directly)

▶ 9֯ C operating temperature (from 18 C) to mitigate APD aging / 
radiation damage

▶ 2021 Oct testbeam with prototype electronics: 
good linearity, E and time resolutions

▶ VFE ASICs (CATIA v2 & 
LiTE-DTU v2) pre-production: 
good performance, 
last design modifications done

▶ HCAL new BE, common with ECAL 
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NEW

https://cds.cern.ch/record/2283187

https://cds.cern.ch/record/2283187


Muon detectors
▶ Existing DT, CSC, RPC detectors with upgraded electronics

▶ cope with ~10x higher rates and improve performance 
▶ improve RPC trigger hit time resolution from 25 ns to 1.5 ns

▶ New detectors in challenging (high rate, high background) forward region 
▶ increase redundancy and extend coverage to |η| = 2.4 - 2.8
▶ enhance tracking performance
▶ allow bending angle measurement 

at trigger level
▶ Gas Electron Multiplier chambers

▶ GE1/1 (LS2), 
GE2/1 (2024/25 & 2023/24 (E)YETS):
50+100 m2 of 2-layer triple-GEM

▶ ME0 (LS3): 60 m2 of 6-layer triple-GEM
▶ Improved RPC

▶ RE3/1, RE4/1 (2024/25 EYETS)

50Posters by S. Mohamed, M.R. Kim

https://cds.cern.ch/record/2283189

https://cds.cern.ch/record/2283189


Muon detectors: first stage completed in LS2
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                           Drift Tubes (DT)
                        slice test with
Phase-2 on-board electronics 

⊳ GE1/1 installed (2x36 SCs of 2 
triple-GEMs), good performance in 
2021 Oct beam test  

⊳ One slice of endcap equipped with new 
GE2/1, RE3/1, RE4/1 chambers

⊳ CSC on-detector electronics upgraded 

50 μm polyimide 
with 5 μm Cu

50-70 μm holes
~140 μm pitch

New Phase-2 
technology



LHC details
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LHC operations

▸ Bunched beams accelerated by RF cavities
▸ fRF synchronised to movement of bunches 

(LHC: fRF = 400.8 MHz @ full energy)
▸ Longitudinal focusing
▸ LHC: 3-4.5 cm bunch length

▸ Dipole magnets keep particles on ~circular 
orbit with alternating arcs and straight sections 

▸ Quadrupole magnets focus the bunches to tiny
cross-sections

▸ LHC: 10-16 μm in transverse bunch size 
▸ LHC parameters

▸ 3564 bunch locations spaced by 7.5 m 
(every 10th RF bucket)

▸ Collisions at every 10/fRF ~ 25 ns 
▸ 1 orbit takes 1/frev = 1/11245 Hz ≈ 90 μs
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LHC ring & beam instrumentation
▸ Insertion Regions (IR) at straight 

sections (~528 m)
▸ Injection from the SPS at 450 GeV 

beam energy close to IR2 (ALICE) and 
IR8 (LHCb)

▸ Acceleration by RF cavities around IR4 
to reach collision energy (13.6 TeV in 
Run 3)

▸ Beam collimation at IR3 and IR7
▸ Collisions at 4 Interaction Points  

(IP1: ATLAS, IP2: ALICE, 
IP5: CMS, IP8: LHCb)

▸ Beam dump system at IR6
▸ Arcs equipped by superconducting 

magnets to bend, focus, and correct 
the orbits of the beams
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The LHC filling cycle
Complex sequence of actions 
to fill the LHC and prepare for 
stable collisions takes >1 hour
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Number of transverse oscillations of a 
particle in one revolution around the 
ring is called the betatron tune 
(Qx=62.31, Qy=60.32 during pp 
collisions at top energy), with (Qx, Qy) = 
(62.28,60.31) at injection
(450 GeV) energy at HL-LHC.
Transverse oscillations 
can be controlled by a 
damping system. ADT 
= LHC transverse damper

RF frequencies of 
two beams locked
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Filling scheme with bunch trains (an example)

▸ 72 bunches from PS 
to SPS in one go 
→ bunch trains

▸ Variable spacing 
to accommodate rise 
times of injection 
and extraction magnets 
(“kickers”) in PS, SPS 
and LHC

▸ Empty bunches also 
useful to determine 
beam backgrounds, pile-up and detector noise

▸ Unique numbering scheme: Bunch Crossing IDentifier (BCID)

▸ LHC can run with a large variety of filling schemes
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39x72 = 2808 bunches (78.8% filled)



Bunch intensity measurements (N1,N2)
▶ DC Current Transformers (DCCT) / Beam Current 

Transformer - DC (BCTDC): Total charge per beam including 
bunched and unbunched charges 

▶ Fast Beam Current Transformers (FBCT), a wall current 
transformer: Relative bunch intensities including charges 
outside the filled bucket (satellites), but not to the unfilled 
bunches (ghosts) due to bunch charge limit 

▶ Beam Quality Monitors (BQM), a wall current monitor 
designed to measure longitudinal bunch parameters such as 
bunch length and phase: sum of 20 samples of (uncalibrated) 
intensity per filled bucket (i.e. not affected by satellites) 

▶ Longitudinal Density Monitors (LDM) / Beam Synchrotron 
Radiation - Longitudinal (BSRL): Longitudinal beam profile to 
determine satellite and ghost charges with a time resolution of 
90 ps (integrated over 5 minutes)

▶ IP8 beam - gas imaging (BGI): Ghost charges by comparing 
rates for empty - empty and empty - filled bunch crossings
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LHC Lumi Days 2019

DCCT                             FBCT

https://indico.cern.ch/event/813285/contributions/3406074

