# Neutrino Oscillation Experiments - review

**Amina Khatun** 

V4 HEP Workshop Budapest, 12-14 March 2024 REN **wigner** 

### Outline

- History of neutrino oscillation
  - Solar neutrino anomaly
  - Atmospheric neutrino anomaly
- Results from past and ongoing experiments
  - Solar neutrino experiments
  - Atmospheric neutrino experiments
  - Short and long-baseline reactor neutrino experiments
  - Accelerator-based long-baseline experiments
- Future roadmap
  - JUNO in China
  - > DUNE in US
  - Hyper-K in Japan

#### **Neutrino sources**



## Neutrinos interact very rarely



- Large neutrino detectors (kton order) are required
- Cosmogenic muons are the major backgrounds, therefore detectors are placed underground or underwater

### **Underground Research Facilities**



# Solar neutrino anomaly

- The observation of solar neutrinos first indicated that there is something about neutrino was unknown that time, which is neutrinos have nonzero mass and mix among each other
- The electron neutrinos reaching at Earth from Sun is around ½ of the predicted flux





## Solar neutrino detection by radiochemical experiments



# Super-Kamiokande (Super-K) in Japan

- 50 kiloton water Cherenkov detector
  - Detect neutrinos from various sources
    - ≻ Sun
    - Earth's atmosphere
    - particle accelerators
  - Real-time measurement of energy spectra of neutrinos









Neutrino

Nucleus

Muon or Electron

## Sudbury Neutrino Observatory, Canada, 1999-2006



Heavy water detector,  $D_2O(1000 \text{ tons})$ How it can do more than water?  $\nu_e + d \rightarrow p + p + e^-$ (CC)  $\nu_x + d \rightarrow p + n + \nu_x$ (NC)  $\nu_x + e^- \rightarrow \nu_x + e^-$ (ES)

NC events in agreement with the predicted total solar event: proves that electron neutrinos are not lost, just converted to other flavors

Solar neutrino data agrees with the solution of Large mixing angle with MSW effect (Mikheyev-Smirnov-Wolfenstein) due to matter potential



# Atmospheric neutrino anomaly

- The hint of the atmospheric neutrino anomaly was found in the relative number of muon neutrino to electron neutrinos
- Electron neutrinos are in agreement with prediction, however, muon neutrinos are less by half of the predicted







Annu. Rev. Nucl. Part. Sci. 2014. 64:343-62

## Discovery of neutrino Oscillation in 1998







# Takaaki Kajita 88 Nobel prize lecture by Of Mod. Phys., REV.

#### Three-neutrino mixing paradigm

Flavor neutrinos ( $u_{lpha}$ ) are superposition of neutrinos with definite masses



#### Atmospheric neutrino oscillation experiments

Wide range of L/E: Atmospheric neutrino has wide range of energies and travels through a few km to thousands of km distance through Earth's matter



#### KM3NeT - ORCA Results

- Currently 19 strings are taking data of ORCA (spacing 23m x 9m) and 21 lines of ARCA (spacing 90m x 36 m)
- Dense distribution of lines make ORCA sensitive to GeV neutrinos





#### Results from DeepCore : 8 strings in dense configuration



Result of DeepCore is competitive to accelerator-based neutrino experiments



#### Reactor neutrino experiment: Daya Bay

- High statistics: 80 ton Gd-LS detector, powerful reactors: 17.6 GW<sub>th</sub>
- Near and far detector in Daya Bay help to reduce systematics due to antineutrino flux from nuclear reactor
- Daya Bay measured 1-3 mixing angle with unprecedented precision





#### Long baseline Reactor neutrino experiment: KamLAND

- Oscillation in KamLand is governed by smaller mass-squared difference (solar mass splitting)
- KamLAND provides complementary • measurement of solar neutrino oscillation parameters





#### Current knowledge about the oscillation parameters

Mixing of three active neutrinos with at least two massive, fits the data quite well\*

$$\begin{split} \Delta m_{21}^2 &= (7.42 \pm 0.21) \times 10^{-5} \text{ eV}^2 \quad (3\%) \\ |\Delta m_{31}^2| &= (2.50 \pm 0.03) \times 10^{-3} \text{ eV}^2 \quad (1\%) \\ \sin^2 \theta_{12} &= 0.304 \pm 0.013 \quad (4\%) \\ \sin^2 \theta_{13} &= 0.02220 \pm 0.00068 \quad (3\%) \\ \sin^2 \theta_{23} &= 0.573 \pm 0.023 \quad (5\%) \\ \delta_{CP} &= (105 - 405)^\circ (3\sigma) \quad (\text{unknown}) \\ \text{sign}(\Delta m_{31}^2) &= +, \text{ slightly favored} \quad (\text{unknown}) \\ \text{http://www.nu-fit.org} \end{split}$$

#### But, so much still unknown

#### **Uncharted Realms of Neutrino Mysteries**

- ✤ What is neutrino mass ordering (NMO) ?
  - Vacuum oscillation of reactor antineutrino
  - Matter effect while passing Earth's matter
- What is the octant of  $\theta_{23}$ 
  - Lower octant if >45 degree
  - Higher octant if < 45 degree</p>
- What is the particle nature of neutrino ?
- Is there fourth neutrino state (sterile) ?
- Is there non-standard Interactions of neutrino
- Link between neutrino and dark matter





#### Accelerator-based Long-baseline neutrino Experiments

- $v_{\mu}$  is produced at accelerators, and in the far detector,  $v_{\mu}$ ,  $v_{e}$ , and  $v_{\tau}$  are detected
- Detectors at source (near det.) and at oscillation maximum (far det.) help in precision measurement

 $ND(\nu_{\mu}) = \Phi(E_{\nu}) \times \sigma(E_{\nu}, A) \times \epsilon_{ND}$  $FD(\nu_{\mu}) = \Phi(E_{\nu}) \times \sigma(E_{\nu}, A) \times \epsilon_{FD} \times P_{osc}$ 





#### Appearance Probability at far detector (295 km) of T2K

Vacuum like  $P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2}(2\theta_{13}) \sin^{2}(\theta_{23}) \sin^{2}\left(1.27\Delta m_{32}^{2}\frac{L}{E_{\nu}}\right)$   $\mp 1.27\Delta m_{32}^{2}\frac{L}{E_{\nu}}8J_{\rm CP}\sin^{2}\left(1.27\Delta m_{32}^{2}\frac{L}{E_{\nu}}\right)$ 

 $J_{\rm CP} \equiv \sin\theta_{13} \cos^2\theta_{13} \sin\theta_{12} \cos\theta_{12} \sin\theta_{23} \cos\theta_{23} \sin\delta_{\rm CP}$ 

- The leading order depend on  $\sin^2\theta_{23}$ , therefore can probe the octant of  $\theta_{23}$ ,
- Subleading dependence on CP phase, therefore detect CP violation



J G Walsh, 20th Conference FP and CPV, 2022

### T2K results on Delta CP

- Eightfold degeneracy between Dirac CP phase, octant of  $\theta^{}_{23}$  and mass ordering
- An asymmetry between neutrino and antineutrino is observed
- Maximal violation of CP is observed for both the mass ordering
  - $\circ \quad \mbox{Normal ordering, and higher} \\ \mbox{octant of } \theta_{23} \mbox{ with a nearly} \\ \mbox{maximum violation of CP is} \\ \mbox{favored} \end{cases}$
- Exclude  $\delta_{CP}$  =0 and  $\pi$  at 90 % C.L.



#### NOvA results on delta CP phase

#### Mayly Sanchez TAUP2023





 No asymmetry in electron neutrino vs antineutrino rates of appearance. Disfavoring points that would produce asymmetry

> Disfavor NH  $\delta = 3\pi/2$  at  $\sim 2\sigma$ Exclude IH  $\delta = \pi/2$  at >  $3\sigma$

Favored region in T2K and NOvA are opposite for NO, Combined analysis is ongoing

#### Future Neutrino Oscillation Experiments

# Hyper-K With the first th





# Jiangmen Underground Neutrino Observatory

Primary goal: Neutrino Mass ordering measurement (with vacuum oscillation)



 $\sim 10/day$ 

New Physics

CCSN @10kpc:  $\mathcal{O}(1000)/s$ DSNB: few/year Proton decay etc



| NPP   | Yangjiang             | Taishan              | DayaBay               |
|-------|-----------------------|----------------------|-----------------------|
| Power | 17.4 GW <sub>th</sub> | 9.2 GW <sub>th</sub> | 17.4 GW <sub>th</sub> |

#### Challenges in NMO measurement with reactor antineutrino



# **Overview of JUNO detector**



#### **Central detector (CD)**

★ 20 ktons liquid scintillator (LS) in acrylic sphere of diameter 35.4 m, largest in the world

Unprecedented energy resolution of 3% at 1 MeV

- High light yield of LS (expected 10<sup>4</sup> photons/MeV)
- ★ High Transparency of LS (20 m attenuation length at 430 nm)
- ★ High photocoverage (□78%) : 17,612 large PMTS (20-inch) and 25,600 small PMTs (3-inch)

#### Water Cherenkov detector (WCD)

- ★ 35 ktons of ultra-pure water in a cylinder of 43.5 m diameter and 44 m in height
- ★ 2400 large PMTs (20-inch)
- ★ Veto and shield surrounding radioactivity and outer photons

**Top Tracker (TT):** two planes of plastic scintillator strips, cover about 60% surface above CD, an extra veto for muons from top, reconstruct muon tracks combined with CD or WCD information validate reconstruction algorithm

## **Current status**

- All civil construction is finished in December 2021
- Stainless steel supporting structure fully assembled in June 2022
- All LPMTs and SPMTs have been produced, tested, and instrumented with waterproof potting
- Around half of the PMTs are already installed
- JUNO electronics being installed: all the electronics under water are installed,
- Veto (WCD and TT): installation is well in progress: ultrapure water system for WCD is installed, scintillator panels of OPERA target will be reused for TT and arrived on site in 2019, the TT support bridge is ready for production
- LS filling and data taking are expected to start in 2024



#### Reactor antineutrino event spectra at JUNO



- TAO: 1 ton fiducial volume LS detector @ 30 m from core with high resolution, provide the reference flux from nuclear reactor, eliminate model dependence
- NMO measurement sensitivity do not rely on the matter effect
- Median sensitivity:  $3\sigma$  at 6 years

#### Physics potential of DUNE

#### Mayly Sanchez TAUP2023

Long baseline (1300 km) and high beam power of 2.4 MW will enable to determine NMO for all values of CP phase with short exposure (3-5 years)



#### Status

• Excavation to complete in 2024, Far detector module installation in 2026, beam data taking and near detector around 2031

#### Physics Potential of Hyper-K

- Beam line at JPARC will be upgraded to reach 1.3 MW, currently at 420 kW, Hyper-K detector with 186 kton (x8 of Super-K) fiducial volume will be built by 2027
- >5 $\sigma$  sensitivity for 60% of CP phase value if MO is known
- Combined with atmospheric data improves the sensitivity if MO is unknown



#### Summary and Outlook



#### Summary and Outlook

- The current oscillation experiments are pushing the boundaries to provide the complete picture of neutrino mixing
  - The nonzero value of 1-3 angle measured by short-baseline reactor neutrino experiment confirms the three neutrino mixing picture
  - T2K and NOvA favor normal ordering but different CP phase space
  - The measurements from atmospheric neutrino experiments are competitive in 2-3 parameter space, more data from KM3NeT-ORCA, and IceCube-DeepCore can bring exciting results
- The next generation experiments with more detector mass and intense source will allow us to test 3-neutrino mixing framework
  - JUNO will be able to measure NMO by  $3\sigma$  C.L. with 6 years exposure
  - The future long-baseline experiment will provide precise measurement of the complex part of the mixing matrix