

Search for Axion-Like-Particle (ALP) with the ATLAS Forward Proton (AFP) Detector with Di-photons

JHEP 07 (2023) 234

André Sopczak (on behalf of the ATLAS Collaboration) IEAP CTU in Prague

ALP with AFP

supported by

Visegrad Fund

Visegrad Workshop, Budapest 12 March 2024

Light-by-light scattering at LHC

SM $\gamma\gamma \rightarrow \gamma\gamma$ observed in lead ion collisions

Run: 366994 Phys. Rev. Lett. 123 (2019) 052001 Event: 453765663 2018-11-26 18:32:03 CEST In *pp* collisions, SM $\gamma\gamma \rightarrow \gamma\gamma$ has small cross section... But BSM can enhance it!

e.g. Axion-like particle (ALP) (assumed for signal modeling)

Mass: m_X Coupling constant: f^{-1}

Signal models

3

In the $\gamma\gamma \rightarrow \gamma\gamma$ event, final state proton can be intact (not dissociative)

ALP Production Cross-section

Coupling constant f⁻¹=0.05 TeV⁻¹

SuperChic 4.02 for EL SuperChic 4.14 for SD and DD

Coupling constant f⁻¹=0.05 TeV⁻¹

signal efficiency × acceptance models × cross-section × luminosity

AFP detectors at -200m and +200m from IP

AFP detector

In $\gamma\gamma \rightarrow \gamma\gamma$ events, final state proton can be intact, record ATLAS forward proton (AFP) detectors

AFP detector

- Each side of the AFP systems is referred to as an arm.
- For tracking the Silicon Tracker (SiT) is used, which consists of four layers of silicon pixel detectors.
- Only FAR stations equipped with the Time-of-Flight (ToF) detectors.

AFP Run-2 data-taking in 2017: 32 fb⁻¹ at 13 TeV

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun3

Used for this analysis 14.6 fb⁻¹

Event selection

Selection efficiency as a function of ALP mass

.

Background sample generation

13

Photons and protons are recorded for each event

Background sample generation

Photons and protons are recorded for each event

Reassignment of protons to diphotons

→ Pure combinatorial BG sample

Background sample generation

15

All other combination of the reassignment

Data and background-only fit

Search results

441 events observed

Dominant systematic uncertanity: AFP global alignment

Beam $\int d \approx 2 - 3 \text{ mm}$ $\sigma_d \approx 300 \,\mu\text{m}$

No double matching

Systematics

Source

Uncertainty

Signal	vield	uncertainty
~-8mai	1010	anoor canney

Dila un romaighting	+2.7 07-		
Plie-up leweighting	-2.6 70		
Luminosity	$\pm 2.4\%$		
Photon identification efficiency	+1.6 %		
Photon isolation efficiency	±1.9%		
Beam optics between ATLAS central and AFP detectors	+0.8 -3.4 %		
AFP global alignment	+10.00 -8.6		
Proton reconstruction efficiency	$+3.0_{-2.2}$		
Showering in the AFP	$+\overline{0.0}_{0}$		
Background modelling (mass-dependent)	$\pm (0.02 - 0.7)$ events		
Signal modelling			
Photon energy resolution	+14.1 %		
Photon energy scale	$\pm (0.5 - 1.0)\%$		
Signal cross-section uncertainty			
Soft survival factor (exclusive process)	±2%		
Soft survival factor (single-dissociative process)	±10%		
Soft survival factor (double-dissociative process)	±50%		

Exclusion limits

This analysis extends previous limits, JHEP 03 (2021) 243, in high mass region

Plans for the future

AFP Run-3 data-taking in

2022: 36.1 fb⁻¹at 13.6 TeV

- Much increased statistics with Run-3 data
- Time-of-Flight (ToF) detector for background reduction
- Using machine learning for signal and background separation

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ForwardDetPublicResults

- Initial Discussion: LHC Working Group on Forward Physics and Diffraction, CERN, 7–8 Dec 201272
- Patrick Odagiu, Searching for ALPs in light-by-light scattering in pp collisions using AFP proton tagging with the ATLAS detector, <u>CERN-STUDENTS-Note-2019-225</u>
- Tomas Chobola, Study of light-by-light scattering with the ATLAS Forward Proton (AFP) Detector at CERN, <u>CERN-THESIS-2020-058</u>
- Petr Dostal: Optimization of the Matching Criteria Between the ATLAS and AFP Detectors at CERN, <u>CERN-THESIS-2020-106</u>
- Hussain Kitagawa, Optimization of diphoton acoplanarity for an Axion-Like Particle in Light-by-Light scattering with the ATLAS detector at CERN, <u>CERN-STUDENTS-Note-2020-029</u>
- Hussain Kitagawa, Study of jet multiplicity for an Axion-Like Particle search in Light-by-Light scattering with the ATLAS central detector and the ATLAS Forward Proton detector, <u>CERN-STUDENTS-Note-2021-237</u>
- Gen Tateno, Search for resonances in light-by-light scattering in 14.6 fb⁻¹ of pp collisions at vs=13 TeV, <u>CERN-THESIS-2023-006, PhD</u>
- Ondrej Matousek, Axion-Like-Particle Search Using Machine Learning for the Signal Sensitivity Optimization with Run-2 LHC Data Recoded by the ATLAS Experiment, <u>CERN-THESIS-2023-075</u>
- Haritina Sakova (CERN 2023 summer student), Study of sensitivities for Axion-Like-Particles using the ATLAS Forward Proton (AFP) detector, <u>CERN-STUDENTS-Note-2024-005</u>

Conclusions

- Run-2 data analysed (data taken in 2017, 14.6 fb⁻¹)
- Matching between $\gamma\gamma$ and proton measurements with AFP
- No indiction of Light-by-Light scattering via an ALP
- Limits set on production cross-section and coupling
- Outlook: LHC Run-3 analysis