Long-range Near-side Signal in High Multiplicity e⁺e⁻ Collisions with ALEPH at 91-209 GeV

<u>Yu-Chen (Janice) Chen</u>, Yi-Chen, Michael Peters, Pao-Ti Chang, Yen-Jie Lee, and Marcello Maggi in collaboration with Austin Baty, Anthony Badea, Chris McGinn, Jesse Thaler, Gian Michelle Innocenti, and Tzu-An Sheng

CMS & ALEPH mini-workshop, Feb. 28th

• arXiv: 2312.05084 • Analysis note: <u>2309.09874</u> • Submitted to PRL

Negligible beam remnant

Controllable initial-state QED radiations

Advantages of e^+e^- collisions to study QCD

No uncertainties from 0 beam PDF

No MPI, no pileup 0

Color-neutral e^+/e^-

- No gluonic initial state radiations
- No initial state correlation 0 effects (such as CGC)

Negligible beam remnant

Controllable initial-state QED radiations

Unambiguous tests for heavy-ion & QCD phenomenology!

Advantages of e^+e^- collisions to study QCD

Structureless e^+/e^-

No uncertainties from 0 beam PDF

No MPI, no pileup 0

Color-neutral e^+/e^-

- No gluonic initial state 0 radiations
- No initial state correlation effects (such as CGC)

The center is e^+/e^- beam line

Two-particle correlations (2PC) in e^+e^- collisions

Two-particle correlation observable

- Soft probe to study Quark-Gluon Plasma (QGP) in HI collisions
- Spatial anisotropy can happen as:

Initial density fluctuation Hydrodynamical expansion of perfect-fluid-like QGP

Ridge-like signals (spatial anisotropy) appears in not only AA, but also pA & pp!

e^+e^- collisions is clean!

- **Onsets of azimuthal anisotropic** 0 correlations?
- Useful test with the absence of initial state correlations effect

Two-particle correlations (2PC) in e^+e^- collisions

• $e^+e^-@10.52$ GeV (Belle) gives stringent upper limits on ridge-like signals for N_{Trk} up to 14

Towards higher energy ...

The ALEPH detector and sample

- Re-analyze with MIT Open Data format 0
- ALEPH archived Pythia6 MC: for corrections and the comparison baseline

* There are also Z-resonance events in LEP2 sample

CMS & ALEPH mini-workshop

Charged multiplicity distributions

* N^{Offline}: number of charged particles after selections

Higher multiplicity reach

CMS & ALEPH mini-workshop

Unfolded thrust distribution — Good quality data

Analysis method: 2PC observable construction

(Illustrations in following slides are with Belle experiment ($\sqrt{s}=10 \text{ GeV}$))

Track pairs' angular difference in η (pseudorapidity), ϕ (azimuthal angle)

Analysis method: 2PC observable construction

Two-particle correlation function

(per-trigger-particle associated yield)

Track pairs' angular difference in η (pseudorapidity), ϕ (azimuthal angle)

trigger particle

$S(\Delta\eta, \Delta\phi)$ $B(\Delta\eta, \Delta\phi)$ = B(U, U)

(Illustrations in following slides are with Belle experiment ($\sqrt{s}=10$ GeV))

CMS & ALEPH mini-workshop

Observable

Understanding the 2PC

Two-particle correlation function (per-trigger-particle associated yield)

 $\mathrm{d}^2\mathrm{N}^{\mathrm{pair}}$ $\overline{N_{\mathrm{trig}}} \, \overline{\mathrm{d} \Delta \eta \mathrm{d} \Delta \phi}$

(Illustrations in following slides are with Belle experiment ($\sqrt{s}=10$ GeV))

Origin-peak intra-jet correlations

CMS & ALEPH mini-workshop

Observable

Understanding the 2PC

Two-particle correlation function (per-trigger-particle associated yield)

 $\mathrm{d}^2\mathrm{N}^{\mathrm{pair}}$ $N_{
m trig}\,{
m d}\Delta\eta{
m d}\Delta\phi$

(Illustrations in following slides are with Belle experiment ($\sqrt{s}=10$ GeV))

Inter-jet correlations @ away side ($\Delta \phi \sim \pi$)

Observable

Understanding the 2PC

Two-particle correlation function (per-trigger-particle associated yield)

 $\mathrm{d}^2\mathrm{N}^{\mathrm{pair}}$ $\overline{N_{\mathrm{trig}}} \, \overline{\mathrm{d}\Delta\eta\mathrm{d}\Delta\phi}$

(Illustrations in following slides are with Belle experiment ($\sqrt{s=10 \text{ GeV}}$)

Anisotropic correlation around thrust axis in e^+e^- ?

$$T = \max_{\hat{n}} \frac{\sum_{i} \left| \overrightarrow{p_{i}} \cdot \widehat{n} \right|}{\sum_{i} \left| \overrightarrow{p_{i}} \right|}$$

If high energy quarks can form some medium, looking from the thrust axis is sensitive to the azimuthal anisotropy of this "imaginary medium."

(quark from e^+e^- annihilation)

//

e

Long-range (1.6 $\leq |\Delta\eta| \leq 3.2$) correlations

 $N_{\rm trk} \geq 30$

<u>e⁺e⁻→ hadrons, $\sqrt{s}=91$ GeV MOD</u> $e^+e^- \rightarrow hadrons, \sqrt{s}=91 \text{ GeV}$ **ALEPH Archived Data ALEPH Archived Data** $C_{ZYAM}^{Data} = 1.61$ $C_{ZYAM}^{Data} = 1.28$ 0.4 $C_{ZYAM}^{PYTHIA} = 1.64$ $C_{ZYAM}^{PYTHIA} = 1.30$ 0.3 C CC 2XAM Thrust coordinates Thrust coordinates Archived PYTHIA 6.1 Archived PYTHIA 6.1 20.2 $1.6 < |\Delta \eta| < 3.2$ 1.6 < |Δη| < 3.2 N_{trk} ≥ 35 ر اتو - <mark>ک</mark> N_{trk} ≥ 30 0.5 1.5 2 2.5 1.5 0.5 $\Delta \phi$ $\Delta \phi$

Good data/MC agreement!

LEP1 e^+e^- 2PC [Phys. Rev. Lett. 123, 212002 (2019)]

CMS & ALEPH mini-workshop

 $N_{\rm trk} \ge 35$

Results with high-multiplicity events LEP1

No significant ridge-like signal enhancement! LEP1 e^+e^- 2PC [Phys. Rev. Lett. 123, 212002 (2019)]

CMS & ALEPH mini-workshop

High collision energy LEP2

Inclusive in multiplicity

CMS & ALEPH mini-workshop

High collision energy & high multiplicity LEP2

high-multiplicity events

CMS & ALEPH mini-workshop

- To quantify the excess, Fourier fit on the 1-dim. correlation: 0 $Y(\Delta\phi) = \frac{1}{N_{\text{trig}}} \frac{dN^{\text{pairs}}}{d\Delta\phi} = \frac{N^{\text{assoc}}}{2\pi} \left(1 + \sum_{n=1}^{n_{\text{max}}} 2V_{n\Delta}\cos(n\Delta\phi)\right)$
- The flow coefficients v_n correspond to different mode expansions: 0 $v_n \{2, 1.6 < |\Delta \eta| < 3.2\} = \text{sign}(V_{n\Delta}) \sqrt{V_{n\Delta}}$

Elliptic flow

Flow coefficients — quantification of anisotropy

Flow coefficients (v_2)

CMS pp [PLB 765 (2017) 193]

(overlap the data points taken from the CMS paper (left))

Long-range near-side excess & next steps

Now

High-multiplicity events in e^+e^- data show long-range near-side enhancement over MC

Next?

and gain more understandings on W^+W^- in high-multiplicity events

In e^+e^- configuration, it is possible to study more sophisticatedly with specialized selections

backup

High quality archived data

Jet 2 Jet 3 Jet 4

to animation)

ALEPH: EPJC 35 (2004) 456

Published results can be reproduced

Big thanks to ALEPH collaboration and MIT open data

LEP 2 data & MC processes

Year v.s. \sqrt{s} v.s. int. L

Year	Mean energy	Luminosity
	\sqrt{s} [GeV]	$[pb^{-1}]$
1995,1997	130.3	6
	136.3	6
	140.2	1
1996	161.3	12
	172.1	12
1997	182.7	60
1998	188.6	180
1999	191.6	30
	195.5	90
	199.5	90
	201.8	40
2000	204.8	80
	206.5	130
	208.0	8
Total	130 - 209	745

Hadronic $q\bar{q}$ production

Four fermion processes

Diverse decay channels above $\sqrt{s} = 180 \text{ GeV}$

LEP 2 event selections

Acceptance

Polar angle of sphericity axis: $7\pi/36 < \theta_{lab} < 29\pi/36$

Hadronic event selection

 \geq 5 tracks $E_{\rm chgd.} \ge 15 {\rm ~GeV}$

LEP 2 event selections

Acceptance Polar angle of sphericity axis: $7\pi/36 < \theta_{lab} < 29\pi/36$

Hadronic event selection \geq 5 tracks $E_{\rm chgd.} \ge 15 {\rm ~GeV}$

Two-particle correlations

Prof. Chia-Jyi Liu (NCUE) visit

Track Selection:

- •
- |d0| < 2 cm
- |z0|< 10 cm
- $|\cos\theta| < 0.94$

Neutral Hadron Selection:

- Particle flow candidate 4, 5 (ECAL / HCAL object)
- E> 0.4 GeV
- $|\cos\theta| < 0.98$ ullet
- **Event Selection:**

 - Number of good ch+neu. particles >= 13 ullet
 - E_{charged} > 15 GeV
 - $|\cos(\theta_{\text{sphericity}})| < 0.82$

Selection

Particle flow candidate 0, 1, 2 (charged hadron / e^{\pm} / μ^{\pm}) Number of TPC hits for a charged tracks (N_{TPC}) >= 4, χ^2 /ndf < 1000

 $p_T > 0.2 \text{ GeV}$ (transverse momentum with respect to beam axis)

• Number of good charged particles >= 5 (including charged hadrons and leptons)

Analysis methods

Analysis methods

Se in anticipate of the second in an an an and the second in an an and the second and an an an and the second and t

Analysis methods

(accounting for baseline of random pairing) Track pairs' angular difference in η (pseudorapidity), ϕ (azimuthal angle) trigger particle $\frac{1}{N_{\rm trk}^{\rm corr}} \frac{d^2 N^{\rm pair}}{d\Delta \eta d\Delta \phi}$ $S(\Delta\eta, Z)$ $= B(0,0) \times$ $B(\Delta\eta, \Delta\phi)$ Beam axis (C.M. frame z axis)

Azimuthal differential associated yield $Y(\Delta \phi)$

Two-particle correlation function (per-trigger-particle associated yield)

 $\mathsf{Y}(\Delta \varphi)$

0.8

0.6

0

$d^2 N^{\text{pair}}$ $N_{\rm trig} \ d\Delta \eta d\Delta \phi$

- factor:

 $\varepsilon(p_{\rm T},\theta)$

• To calibrate the nonuniform detection efficiency and misconstruction bias

Reconstructed tracks are weighted by the inverse of the efficiency correction

$$\theta, \phi, N_{\text{trk}}^{\text{rec}}) = \left[\frac{d^3 N^{\text{reco}}}{dp_{\text{T}} d\theta d\phi} / \frac{d^3 N^{\text{gen}}}{dp_{\text{T}} d\theta d\phi}\right]_{N_{\text{trk}}^{\text{rec}}}$$

• A closure test is performed by comparing the p_T , θ , ϕ distributions of the generator level and those of the corrected reconstructed level

Corrections

- $Y(\Delta \phi)_{\text{gen},i_g}$ $C(\Delta \phi) =$ $\overline{Y}(\Delta \phi)_{\rm reco.}$

• To deal with remaining possible reconstruction effects

• Bin-by-bin correction: the correction factor is derived from the histogram ratio of MC correlation functions at the reconstruction and generator level as

• Final data correlation results are obtained from the multiplication of the original correlation function with the bin-by-bin correction factor

Analysis method: 2PC observable construction

Factoring out the random pairing effect!

Track pairs' angular difference in η (pseudorapidity), ϕ (azimuthal angle)

Perfect-fluid-like QGP expansion

2PC characterizes the medium expansion in the transverse region w.r.t. the reference axis:

Beam axis analysis:

hydrodynamic expansion of possible QGP medium in HI collisions

Hypothetical QGP in e^+e^- ?

2PC characterizes the medium expansion in the transverse region w.r.t. the reference axis:

Beam axis analysis: hydrodynamic expansion of possible QGP medium in HI collisions

Thrust axis analysis: soft emissions or QGP in e^+e^- annihilation

Prof. Chia-Jyi Liu (NCUE) visit

Thrust-axis two-particle correlation

Out-going direction of e^+e^- event \neq beam axis

e

$$T = \max_{\hat{n}} \frac{\sum_{i} \left| \overrightarrow{p_{i}} \cdot \widehat{n} \right|}{\sum_{i} \left| \overrightarrow{p_{i}} \right|}$$

Particles (p_T, η, ϕ) are re-calculated w.r.t. thrust axis

\mathbf{D}_{1} **Thrust axis** \hat{n} (used it as z axis) trigger particle

 $\Delta \eta = \eta_1 - \eta_2$

W?

Beam axis

Prof. Chia-Jyi Liu (NCUE) visit

LEP1

Long-range correlations (c.f. MC)

Beam axis

Puzzles we faced along the way...

High-energy LEP 2 data

Enhanced signals?

Difficulties of the analysis:

- Larger initial-state radiation effects (radiative return to the Z)
 - Complicated physics processes above the di-boson production threshold (WW, ZZ)

Ongoing checks:

- Scanning of the long-range $|\Delta \eta|$ projection window with MC
 - To see if the signals really persist regardless the choice of the configuration
 - Consistency check: look into the year-dependence (collision-energy-dependence)
 - Compared with modern MC generators

2PC - comparisons with the lowenergy Belle experiment $(<math>\sqrt{s}=10.52$ GeV)

Belle e+e-[Phys. Rev. Lett. 128, 142005 (2022)]

CMS & ALEPH mini-workshop

Results

