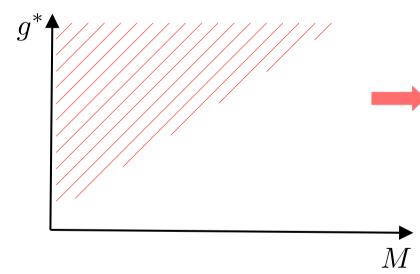
Small-instanton induced flavor invariants and the axion potential

Based on 2402.09361

R. Bedi, T. Gherghetta, C. Grojean, G. Guedes, J. Kley, H. Vuong

guilherme.guedes@desy.de

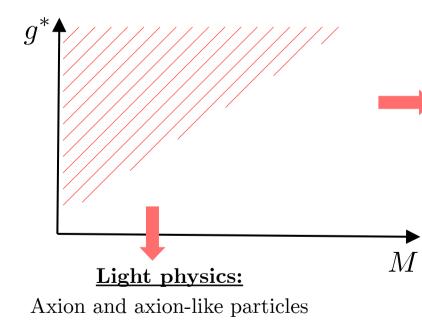
Where is new physics?



<u>SMEFT: test assumptions on the</u> <u>UV</u>

- Positivity
- Weakly-coupled: Trees vs Loops
 - Flavor hierarchies
- Mapping models to observables

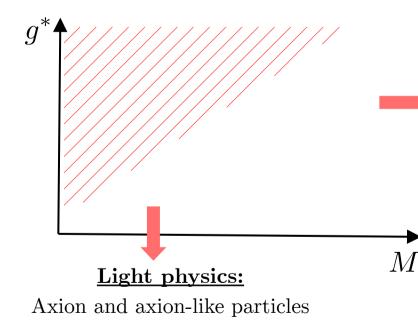
Where is new physics?



<u>SMEFT: test assumptions on the</u> <u>UV</u>

- Positivity
- Weakly-coupled: Trees vs Loops
 - Flavor hierarchies
- Mapping models to observables

Where is new physics?



$\frac{\text{SMEFT: test assumptions on the}}{\text{UV}}$

- Positivity
- Weakly-coupled: Trees vs Loops
 - Flavor hierarchies
- Mapping models to observables

How does heavy physics affect axion solutions?

The strong CP-problem

$$\mathcal{L} \supset \overline{\theta} \frac{g_s}{16\pi^2} G \tilde{G} \qquad \overline{\theta} = \theta + \arg(\det \mathcal{M}_q)$$

• CP-odd term – contributes to neutron EDM

$$d_n < 3 \times 10^{-26} e \cdot cm \Rightarrow \overline{\theta} < 10^{-10}$$

- Why so small?
 - Symmetry based solution
 - Dynamical solution

The QCD axion

• A dynamical solution: introduce a spontaneously broken $U(1)_A$

$$\mathcal{L} \supset \left(\overline{\theta} + \frac{a}{f_a}\right) \frac{g_s}{16\pi^2} G\tilde{G}$$

• Axion is the Goldstone boson, whose shift symmetry allows to absorb θ effects: $\langle a \rangle$

$$\theta_{\rm eff} \equiv \frac{\langle a \rangle}{f_a}$$

Strong CP-problem is now a question about the vev of the axion

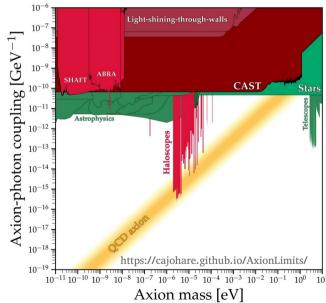
The axion potential

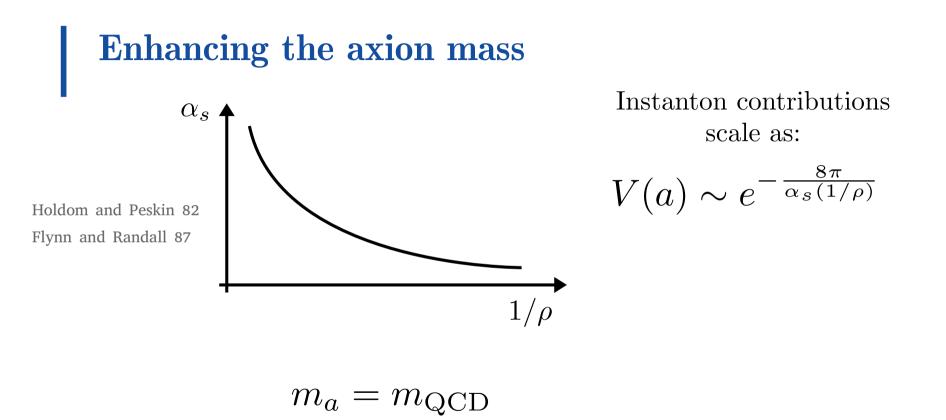
- QCD effects break shift-symmetry and generate an axion potential, with $\langle a \rangle = 0$ Vafa, Witten 94
- Through χ_{PT} axion mass can be related to pion mass

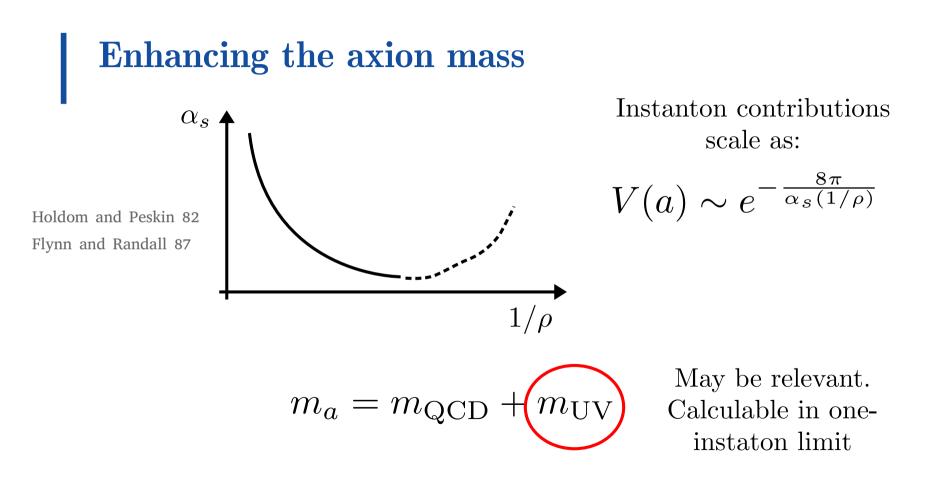
$$m_a f_a = \frac{m_u m_d}{(m_u + m_d)^2} m_\pi^2 f_\pi^2$$

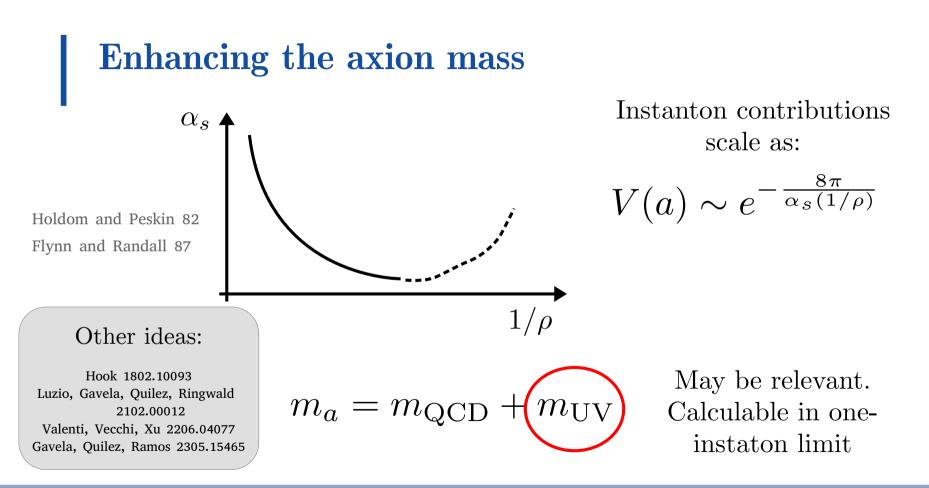
Cortona, Hardy, Vega, Villadoro 1511.02867

How stable is this prediction?









Product gauge groups

Agrawal and Howe 1710.04213

$$SU(3)_1 \times SU(3)_2 \to SU(3)_c$$
$$\frac{1}{\alpha_1(M)} + \frac{1}{\alpha_2(M)} = \frac{1}{\alpha_s(M)}$$

- Each sector is more strongly coupled than QCD and therefore has more relevant instanton effects
- Stronger effects when one considers k-product of SU(3)

Csáki, Ruhdorfer, Shirman 1912.02197

CP-violation (SM)

 Breaking of shift-symmetry and CP-violation result in linear term for the potential

$$V(a) = \chi_{\mathcal{O}}(0)\frac{a}{f_a} + \frac{1}{2}\chi(0)\left(\frac{a}{f_a}\right)^2$$

• This linear term shifts the minimum

$$\theta_{\rm ind} \equiv -\frac{\chi_{\mathcal{O}}(0)}{\chi(0)}$$

<u>CP-violating effects induce contributions to θ </u>

CP-violation (SM)

• CP violation in the SM is parameterized by

$$J_4 = \operatorname{Im}\left(\operatorname{Tr}\left[Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger}\right]
ight)$$
 Jarlskog 85
Bernabeu, Branco, Gronau 85

The misalignment of the axion potential from SM CPV is too small to be observed:

$$\theta_{\rm eff}^{\rm SM} \sim \frac{G_F}{m_c^2} J_{\rm CKM} f_\pi^4 \Lambda_\chi^2 \sim 10^{-19}$$
Luzio, Gisbert, Levati, Paradisi, Sørensen 2312.17310

- Had J_4 been larger, PQ solution would not have worked
- Observation of axion and $\theta > 10^{-19}$ implies new sources of CPV.

New sources of CPV – SMEFT

• Using the SMEFT expansion to parameterize new physics:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{\mathcal{L}_6}{\Lambda^2} + \mathcal{O}(1/\Lambda^4) \qquad \begin{array}{c} \mathcal{L}_d = c_i \mathcal{O}_i \\ [\mathcal{O}_i] = d \end{array}$$

- Many potential sources of CPV can they affect the QCD axion solution?
- Basis of Jarlskog-like CPV invariants for the SMEFT:

 $L_{abcd}(C) = \operatorname{Im} \left[\operatorname{Tr} \left(X_{u}^{a} X_{d}^{b} X_{u}^{c} X_{d}^{d} C \right) \right]$ Bonnefoy, Gendy, Grojean, Ruderman $X_{u,d} \equiv Y_{u,d} Y_{u,d}^{\dagger}$ 2112.03889, 2302.07288

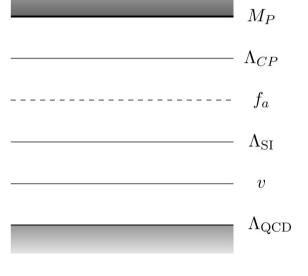
Why does this matter?

- CP-violation effects with only QCD : $\sim \frac{\Lambda_{\rm QCD}}{\Lambda_{\rm CPV}}$
- In the presence of high-energy instantons, contributions to enhanced EDMs

$$\sim \frac{\Lambda_{\rm SI}}{\Lambda_{\rm CPV}} \lesssim 10^{-10}$$

Do these models still work?

Can CPV invariants be useful?



Bedi, Gherghetta, Pospelov 2205.07948

Vacuum to vacuum transition in instanton background

't Hooft 76 Shifman Vainshtein, Zakharov 79

$$\langle 0|0\rangle\big|_{1-\text{inst.}} = e^{-i\theta_{\text{QCD}}} \int d^4x_0 \int \frac{d\rho}{\rho^5} d_N(\rho) \int \prod_{f=1}^{N_f} \left(\rho \, d\xi_f^{(0)} d\bar{\xi}_f^{(0)}\right) e^{-\bar{\psi}J\psi + \text{h.c.}}$$

AT

Belavin, Polyakov, Schwartz, Tyupkin 75 BPST instanton:

- Gauge orientation
- Size, ρ
- Center, x_0

collective coordinates

$$\int \mathcal{D}\mathcal{A} \, e^{\mathcal{A}_{\mu}M_{\mu\nu}\mathcal{A}_{\nu}} = \frac{1}{\sqrt{\det M}}$$

Zero modes, divergent path integral

• Vacuum to vacuum transition in instanton background

't Hooft 76 Shifman Vainshtein, Zakharov 79

$$\langle 0|0\rangle \Big|_{1-\text{inst.}} = e^{-i\theta_{\text{QCD}}} \int d^4x_0 \int \frac{d\rho}{\rho^5} \Big|_{d_N(\rho)} \int \prod_{f=1}^{N_f} \left(\rho \, d\xi_f^{(0)} d\bar{\xi}_f^{(0)}\right) e^{-\bar{\psi}J\psi + \text{h.c.}}$$

_____,

Split into zero and non-zero modes

$$\int \mathcal{D}\mathcal{A} \sim \int dx_0^4 \int d\rho J(\eta, x_0, \rho) \int \mathcal{D}\tilde{\mathcal{A}} \qquad \text{Integral over non-zero modes} \\ \xrightarrow{\text{Jacobian from coordinate} \\ \text{transformation}} \int \mathcal{D}\tilde{\mathcal{A}} \qquad \text{Integral over non-zero modes}$$

Vacuum to vacuum transition in instanton background

't Hooft 76 Shifman Vainshtein, Zakharov 79

$$\langle 0|0\rangle \Big|_{1-\text{inst.}} = e^{-i\theta_{\text{QCD}}} \int d^4x_0 \int \frac{d\rho}{\rho^5} d_N(\rho) \int \prod_{f=1}^{N_f} \left(\rho \, d\xi_f^{(0)} d\bar{\xi}_f^{(0)}\right) e^{-\bar{\psi}J\psi + \text{h.c.}}$$

....

Instanton solution will correspond to fermion zero modes

$$-i \mathcal{D} \Big|_{1-\text{inst.}} \psi^{(0)}(x) = 0$$

$$\psi^{(0)}(x) \Big|_{1-\text{inst.}} = \begin{pmatrix} \chi_L \\ \chi_R \end{pmatrix} = \frac{1}{\pi} \frac{\rho}{\left[(x-x_0)^2 + \rho^2 \right]^{3/2}} \begin{pmatrix} 0 \\ \varphi \end{pmatrix}$$

Only χ_L^{\dagger} , χ_R will possess zero modes in the instanton solution. In anti-instanton χ_R^{\dagger} , χ_L will possess solution

Shifman 2012

• Vacuum to vacuum transition in instanton background

't Hooft 76 Shifman Vainshtein, Zakharov 79

$$\langle 0|0\rangle \Big|_{1-\text{inst.}} = e^{-i\theta_{\text{QCD}}} \int d^4x_0 \int \frac{d\rho}{\rho^5} d_N(\rho) \int \prod_{f=1}^{N_f} \left(\rho \, d\xi_f^{(0)} d\bar{\xi}_f^{(0)}\right) e^{-\bar{\psi}J\psi + \text{h.c.}}$$

• Eigenmode expansion: $\psi_f(x) = \sum_k \xi_f^{(k)} \psi^{(k)}$

't Hooft 76

$$\int d\xi_f^{(0)} \xi_f^{(0)} = 1 \implies \int d\xi_f^{(0)} \psi_f = \psi_f^{(0)}$$

 $\mathcal{D}\psi\mathcal{D}\overline{\psi} = d\xi^{(0)}d\overline{\xi}^{(0)}\mathcal{D}\widetilde{\psi}\mathcal{D}\overline{\widetilde{\psi}}$

Instanton computations

• Fermion zero modes give rise to determinant-like structures:

$$\int d^{3}\xi_{1}d^{3}\xi_{2} \ e^{\xi_{1}A\xi_{2}} = \det A ,$$

$$\int d^{3}\xi_{1}d^{3}\xi_{2} \ e^{\xi_{1}A\xi_{2}}\xi_{1}B\xi_{2} = \frac{1}{2}\epsilon^{i_{1}i_{2}i_{3}}\epsilon^{j_{1}j_{2}j_{3}}A_{i_{1}j_{1}}A_{i_{2}j_{2}}B_{i_{3}j_{3}}$$

$$\det(A) = \frac{1}{n!} \epsilon_{i_1,\dots,i_n} \epsilon_{i_1,\dots,i_n} A_{i_1 j_1} \dots A_{i_n j_n}$$

<u>Trace-like invariants will not match these structures making</u> <u>connection to observables less direct</u>

	$U(3)_{\mathrm{Q}}$	$U(3)_{\mathrm{u}}$	$U(3)_{\rm d}$	$U(3)_{ m L}$	$U(3)_{ m e}$
$e^{i heta_{ m QCD}}$	1_{+6}	1_{-3}	1_{-3}	1_0	1_0
$Y_{ m u}$	3_{+1}	$\mathbf{\bar{3}}_{-1}$	1_{0}	1_{0}	1_{0}
$Y_{ m d}$	${f 3}_{+1}$	1_{0}	$\mathbf{\bar{3}}_{-1}$	1_{0}	1_{0}
$Y_{\rm e}$	1_{0}	1_{0}	1_{0}	3_{+1}	$\mathbf{\bar{3}}_{-1}$

$$\frac{\text{SM invariant with}}{J_{\theta}} = \text{Im}[e^{-i\theta_{\text{QCD}}} \det(Y_{\text{u}}Y_{\text{d}})]$$

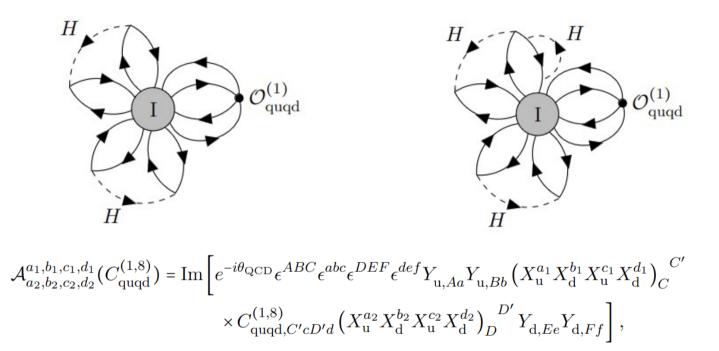
$$\begin{aligned} \mathcal{O}_{quqd}^{(1)} &= \bar{Q}u\bar{Q}d \text{ has 81 CPV phases} \\ \mathcal{I}(C_{quqd}^{(1,8)}) &= \mathrm{Im}\left[e^{-i\theta_{\mathrm{QCD}}}\epsilon^{ABC}\epsilon^{abc}\epsilon^{DEF}\epsilon^{def}Y_{\mathrm{u},Aa}Y_{\mathrm{u},Bb}C_{quqd,CcDd}^{(1,8)}Y_{\mathrm{d},Ee}Y_{\mathrm{d},Ff}\right] \\ & \bullet \text{ Redundant in regards to Trace-like basis!} \end{aligned}$$

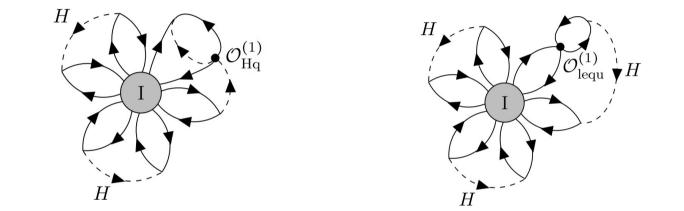
$$\begin{aligned} & \mathcal{O}_{quqd}^{(1)} = \bar{Q}u\bar{Q}d \\ & \mathcal{A}_{a_{2},b_{2},c_{2},d_{2}}^{a_{1},b_{1},c_{1},d_{1}}(C_{quqd}^{(1,8)}) = \operatorname{Im}\left[e^{-i\theta_{QCD}}\epsilon^{ABC}\epsilon^{abc}\epsilon^{DEF}\epsilon^{def}Y_{u,Aa}Y_{u,Bb}\left(X_{u}^{a_{1}}X_{d}^{b_{1}}X_{u}^{c_{1}}X_{d}^{d_{1}}\right)_{C}^{C'} \\ & \times C_{quqd,C'cD'd}^{(1,8)}\left(X_{u}^{a_{2}}X_{d}^{b_{2}}X_{u}^{c_{2}}X_{d}^{d_{2}}\right)_{D}^{D'}Y_{d,Ee}Y_{d,Ff}\right], \end{aligned}$$

$$& \mathcal{O}_{Hq}^{(1)} = \left(H^{\dagger}i\overleftarrow{D}_{\mu}H\right)\left(\bar{Q}\gamma^{\mu}Q\right) \\ & \mathcal{I}_{abcd}(C_{Hq}^{(1,3)}) \equiv \operatorname{Im}\left[e^{-i\theta_{QCD}}\epsilon^{IJK}\epsilon^{ijk}Y_{u,Ii}Y_{u,Jj}\left(X_{u}^{a}X_{d}^{b}X_{u}^{c}X_{d}^{d}C_{Hq}^{(1,3)}Y_{u}\right)_{Kk}\det Y_{d}\right] \end{aligned}$$

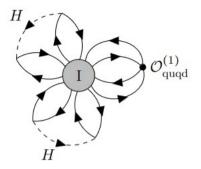
$$& \mathcal{O}_{lequ}^{(1)} = \left(\bar{L}e\right)\left(\bar{Q}u\right) \\ \mathcal{I}_{abcd}^{(1,3)} \equiv \operatorname{Im}\left[e^{-i\theta_{QCD}}\epsilon^{IJK}\epsilon^{ijk}Y_{u,Ii}Y_{u,Jj}\left(X_{u}^{a}X_{d}^{b}X_{u}^{c}X_{d}^{d}\right)_{K}^{L}\left(Y_{e}^{\dagger}X_{e}^{f}\right)^{mN}C_{lequ,NmLk}^{(1,3)}\det Y_{d}\right] \end{aligned}$$

_ _ _+





$$\mathcal{I}_{abcd}(C_{\mathrm{Hq}}^{(1,3)}) \equiv \mathrm{Im}\left[e^{-i\theta_{\mathrm{QCD}}}\epsilon^{IJK}\epsilon^{ijk}Y_{\mathrm{u},Ii}Y_{\mathrm{u},Jj}\left(X_{\mathrm{u}}^{a}X_{\mathrm{d}}^{b}X_{\mathrm{u}}^{c}X_{\mathrm{d}}^{d}C_{\mathrm{Hq}}^{(1,3)}Y_{\mathrm{u}}\right)_{Kk}\det Y_{\mathrm{d}}\right]$$
$$\mathcal{I}_{abcd}^{f}(C_{\mathrm{lequ}}^{(1,3)}) \equiv \mathrm{Im}\left[e^{-i\theta_{\mathrm{QCD}}}\epsilon^{IJK}\epsilon^{ijk}Y_{\mathrm{u},Ii}Y_{\mathrm{u},Jj}\left(X_{\mathrm{u}}^{a}X_{\mathrm{d}}^{b}X_{\mathrm{u}}^{c}X_{\mathrm{d}}^{d}\right)_{K}^{L}\left(Y_{\mathrm{e}}^{\dagger}X_{\mathrm{e}}^{f}\right)^{mN}C_{\mathrm{lequ},NmLk}^{(1,3)}\det Y_{\mathrm{d}}\right]$$



$$\chi_{\text{quqd}}^{(1)\,(\text{UV})}(0) = \frac{i}{\Lambda_{\mathcal{QP}}^2} \left(\mathcal{A}_{0000}^{0000} \left(C_{\text{quqd}}^{(1)} \right) + \mathcal{B}_{0000}^{0000} \left(C_{\text{quqd}}^{(1)} \right) \right) \int \frac{d\rho}{\rho^5} d_N(\rho) \frac{2!}{(6\pi^2)^2} \frac{2}{5\pi^2 \rho^2}$$

Result proportional to invariants

Integral over instanton size dependent on UV theory

Computation

NDA

- Result proportional to invariants
 - Easily test flavor assumptions of the WC
- Refine naive dimensional analysis estimates

Csáki, D'Agnolo, Kuflik, Ruhdorfer, 2311.09285

- Extend to other operators
 - While \mathcal{O}_{quqd} seems to give the larger contribution, might be a suppressed in the UV

Flavor scenarios

- Results in flavor-invariant makes flavor assumption testing straightforward
 - Anarchic scenario All flavor entries are $\mathcal{O}(1)$
 - Large flavor-chaging interactions
 - Minimal Flavor Violation (MFV) WC are polynomials in Yukawa couplings
 - Less constrained

UV scenarios

Product gauge groups

Scalars which spontaneously break product gauge group to color group, vev $\langle \sigma \rangle$

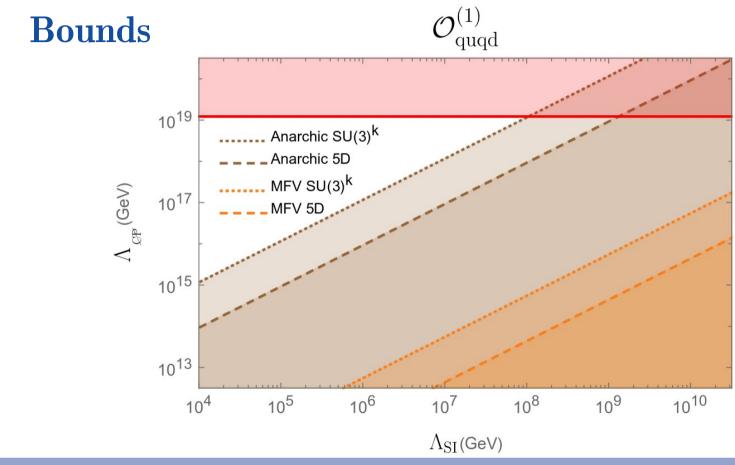
$$d_N(\rho) \to d_N(\rho) e^{-2\pi^2 \rho^2 \sum |\langle \sigma \rangle|^2}$$

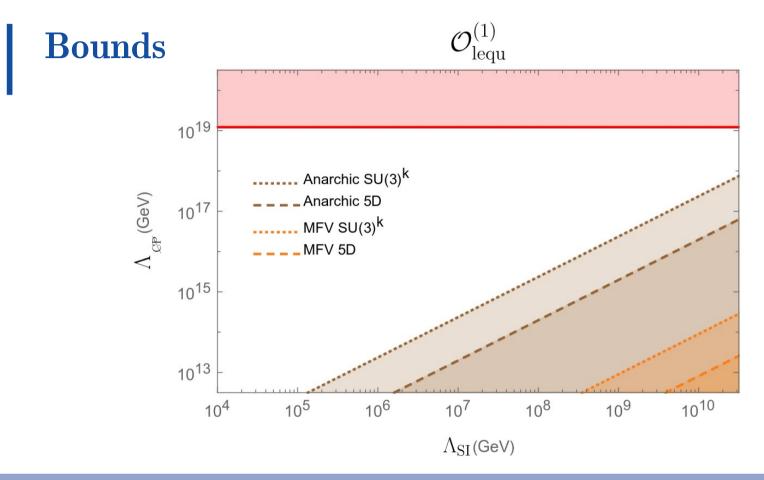
■ <u>5D instantons</u>

Uplift BPST instanton to an extra dimension of size R

Gherghetta, Khoze, Pomarol, Shirman, 2001.05610

 $d_N(\rho) \to d_N(\rho) e^{R/\rho}$





Axion EFT – Shift-breaking effects

• Shift-symmetric ALP, derivative basis:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) + \frac{\partial_{\mu} a}{f} \sum_{\psi \in \rm SM} \bar{\psi} c_{\psi} \gamma^{\mu} \psi$$

• Shift-breaking ALP effects, Yukawa-like basis:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{a}{f} \left(\bar{Q} \tilde{Y}_{u} \tilde{H} u + \bar{Q} \tilde{Y}_{d} H d + \bar{L} \tilde{Y}_{e} H e + \text{h.c.} \right)$$

Axion EFT – Shift-breaking effects

- Yukawa-like basis is the more general, and can capture shiftsymmetric effects
 - Performing a field-redefinition on the fermions $\psi' \equiv e^{-i\frac{a}{f}c_{\psi}}\psi$

$$\tilde{Y}_{u,d} = i(Y_{u,d}c_{u,d} - c_Q Y_{u,d}) , \quad \tilde{Y}_e = i(Y_e c_e - c_L Y_e)$$

Chala, G. G., Ramos, Santiago 2012.09017

• To verify whether a specific value of \tilde{Y} respects shift-symmetry one needs invariants! Bonnefoy, Grojean, Kley 2206.04182

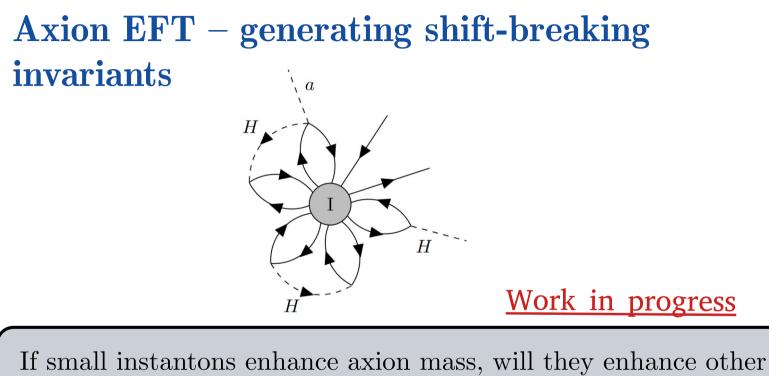
Axion EFT – **Shift-breaking invariants**

- There are 13 invariants in the fermionic sector
 - Only 1 is CP-even:

Bonnefoy, Grojean, Kley 2206.04182

$$I_{ud}^{(4)} = \operatorname{Im} \operatorname{Tr} \left(\left[X_u, X_d \right]^2 \left(\left[X_d, \tilde{Y}_u Y_u^{\dagger} \right] - \left[X_u, \tilde{Y}_d Y_d^{\dagger} \right] \right) \right)$$

If small instantons enhance axion mass, will they enhance other shift-breaking invariants?



shift-breaking invariants?

Conclusions

- Small-instantons can be responsible for relevant UV contributions to the axion mass
- In the presence of CP violating physics, this enhancement will also induce contributions to nEDM
 - The estimation of these effects can be made easier with the help of determinant-like invariants
- Shift-breaking effects can also be generated in ALP coupling to fermions

Thanks

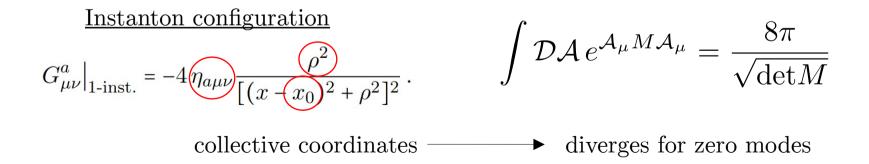
guilherme.guedes@desy.de

• Vacuum to vacuum transition in instanton background

't Hooft 76 Shifman Vainshtein, Zakharov 79

$$\langle 0|0\rangle |_{1-\text{inst.}} = e^{-i\theta_{\text{QCD}}} \int d^4x_0 \int \frac{d\rho}{\rho^5} d_N(\rho) \int \prod_{f=1}^{N_f} \left(\rho \, d\xi_f^{(0)} d\bar{\xi}_f^{(0)}\right) e^{-\bar{\psi}J\psi + \text{h.c.}}$$

AT



Instanton computations – zero modes measure

$$S = S_{cl} + \frac{1}{2}\phi^{A}_{qu}M_{AB}(\phi_{cl})\phi^{B}_{qu}$$

$$\phi^{A}_{qu} = \sum_{\alpha} \xi_{\alpha}F^{A}_{\alpha} \qquad M_{AB}F^{B}_{\alpha} = \epsilon_{\alpha}F^{A}_{\alpha} \qquad \langle F_{\alpha}|F_{\beta}\rangle = \delta_{\alpha\beta}u_{\alpha}$$

$$S = S_{cl} + \frac{1}{2}\sum_{\alpha}\xi_{\alpha}\xi_{\alpha}\epsilon_{\alpha}u_{\alpha}$$

$$[d\phi] \equiv \prod_{\alpha=0}^{\infty}\sqrt{\frac{u_{\alpha}}{2\pi}}d\xi_{\alpha} \qquad \int [d\phi] e^{-S[\phi]} = \int \sqrt{\frac{u_{0}}{2\pi}}d\xi_{0} e^{-S_{cl}}(\det'M)^{-1/2}$$

Vandoren, van Nieuwenhuizen 0802.1862

Fermion zero-modes

$$i\gamma_{\mu}\mathcal{D}_{\mu}u_{0} = 0 \qquad \qquad \gamma_{\mu} = \begin{pmatrix} 0 & -i\sigma_{\mu}^{-} \\ i\sigma_{\mu}^{+} & 0 \end{pmatrix}, \quad \{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}, \\ u_{0} = \begin{pmatrix} \chi_{L} \\ \chi_{R} \end{pmatrix}, \quad \sigma_{\mu}^{+}\mathcal{D}_{\mu}\chi_{L} = 0, \quad \sigma_{\mu}^{-}\mathcal{D}_{\mu}\chi_{R} = 0, \end{cases}$$

$$-\mathcal{D}_{\mu}^{2}\chi_{L} = 0, \qquad \left\{-\mathcal{D}_{\mu}^{2} + 4\sigma\tau \frac{\rho^{2}}{[(x-x_{0})^{2} + \rho^{2}]^{2}}\right\}\chi_{R} = 0.$$

$$u_0(x) = \frac{1}{\pi} \frac{\rho}{(x^2 + \rho^2)^{3/2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \varphi,$$

Shifman, Advanced Topics in Quantum Field Theory 2012

G. Guedes @ TH BSM Forum

HI $\mathcal{O}_{quqd}^{(1)}$

$$\begin{split} \chi^{(1)}_{\text{quqd}}(0)^{1-\text{inst.}} &= -i \lim_{k \to 0} \int d^4 x \, e^{ikx} \left\{ 0 \left| T \left\{ \frac{1}{32\pi^2} G \widetilde{G}(x), \frac{C^{(1)}_{\text{quqd}}}{\Lambda^2_{\mathcal{QP}}} \mathcal{O}^{(1)}_{\text{quqd}}(0) \right\} \right| 0 \right\}, \\ &= e^{-i\theta_{\text{QCD}}} \int d^4 x_0 \int \frac{d\rho}{\rho^5} d_N(\rho) \int \mathcal{D}H \mathcal{D}H^{\dagger} e^{-S_0[H,H^{\dagger}]} \int \prod_{f=1}^3 \left(\rho^2 \, d\xi^{(0)}_{u_f} d\xi^{(0)}_{d_f} d^2 \bar{\xi}^{(0)}_{Q_f} \right) \\ &\times e^{\int d^4 x (\bar{Q}Y_u \widetilde{H}u + \bar{Q}Y_d H d + \text{h.c.})(x)} \frac{1}{32\pi^2} \int d^4 x \, G \widetilde{G}(x) \left(\frac{C^{(1)}_{\text{quqd}}}{\Lambda^2_{\mathcal{QP}}} \bar{Q}u \bar{Q}d(0) + \text{h.c.} \right), \end{split}$$

G. Guedes [®] TH BSM Forum

Computation