
Will Buttinger

Will Buttinger

xRooFit: Status and Thoughts for the
Future

10/04/2024 1 of 5

https://gitlab.cern.ch/will/xroofit

Introduction
What is xRooFit?
• A high-level API for RooFit, to assist with creation, inspection, modification,

and analysis of workspaces
– xRooFit is to RooFit as Keras is to Tensorflow
– Included in ROOT 6.30 under ROOT::Experimental::XRooFit namespace

• Toolkit-agnostic: should work with all workspaces, regardless of how they
were made

• Rule: xRooFit does not have any custom classes that are persistified
– Everything has to be done through ROOT/RooFit/RooStats classes
– xRooFit classes 'wrap' over these classes to provide the additional functionality
– Result is xRooFit can be used at any stage of a workflow without forcing

dependency either upstream or downstream
• Bonus: Provides a GUI (the xRooBrowser) to much of the functionality

Purpose of this presentation
• Show you some of the things you can do with xRooFit
• Share with you some of my thoughts about future developments
• Hear your thoughts about how xRooFit could help you and your users

– In particular: keen to try opening your workspaces and see what happens
10/04/2024 Will Buttinger 2 of 5

Newest features

• Channel yield plots

• Hybrid dataset generation (asimov in some channels, obsData in others)

• Improved progress tracking during lengthy fits

• Overlaying alternative model states

• Impact plots (using hessian approximation) for fit results

• PLR scans and automated CLs limit scanning

10/04/2024 Will Buttinger 3 of 5

w["simPdf"].Draw("x=channelCat")

from ROOT.Experimental import XRooFit as XRF
w = XRF.xRooNode("/path/to/workspace.root")

ds = w["simPdf"].reduced("*050*").generate(fr="",expected=True) # asimov dataset of current state of *050* channels
ds.Add(w["simPdf"].reduced("*050*",invert=True).datasets()["obsData"])

fr = w["simPdf"].nll("obsData").minimize()

w["simPdf"].Draw("eauxRatio")
w.SetFitResult("") # restores prefit state
w["simPdf"].Draw("overlayModel Prefit")

fr.Draw("impact:parName") # draw impact for parameter "parName"

hs = w["simPdf"].nll("obsData").hypoSpace("poiName")
hs.scan("cls")
print(hs.limits())

Future development thoughts
• Would like to improve management of NLL Options and Fit Options

– NLL Options: control aspects of exactly what objective function is created
• Offsetting, Const-optimization, binnedLikelihood mode, range, …
• Currently held in a RooLinkedList

– Fit Options: control aspects of the minimization
• Strategy sequences, Hesse and/or Minos activation, print level, max iterations, …
• Extra options that are xRooFit-specific, such as how frequently to report fit progress, or

size of the logging buffer when saving logs to fit result
• Currently using a ROOT::Fit::FitConfig for this, which contains a generic

MinimizerOptions() for adding arbitrary settings
• For a number of reasons, this class has never felt quite right for this use case

– Vague idea: ModelConfig (currently almost entirely ignored by xRooFit) could
become the object that is used to fully define the objective function, and we think
of a suitable object for holding the Fit options

• FitResults should be able to hold metadata
– Currently xRooFit abuses the constPars list for this (adds extra things)
– Could then store the ModelConfig and FitOptions names (or even pointers?),

along with e.g. logging output

10/04/2024 Will Buttinger 4 of 5

https://root.cern.ch/doc/master/classROOT_1_1Fit_1_1FitConfig.html

Future development thoughts
• Storage of scan results should also be improved

– Currently using a RooStats::HypoTestInverterResult, which can hold collections
of HypoTestResults

– But HypoTestResult's don't have dedicated capability to store RooFitResults
• Again, xRooFit does some abusive things to store partial or full fit results through them

• Add support for Chi2 objective function (currently only NLL function
supported)
– Could have a generic method for creating any type of function

• Would love to make a proper dedicated GUI rather than the current
approach of figuring out how to hijack/utilise existing TBrowser GUI
– Just not enough capacity to work on this
– And the GUI is ultimately not the primary interface to xRooFit, despite it being

very useful to quickly get familiar with someone's workspace (as well as
showcasing xRooFit functionality)

• If nothing else, I will work on adding documentation to the ROOT webpages,
as well as the dedicated readthedocs I have been working on

10/04/2024 Will Buttinger 5 of 5

https://root.cern/doc/master/classROOT_1_1Experimental_1_1XRooFit_1_1xRooNode.html
https://xroofit.readthedocs.io/

Backup

10/04/2024 Will Buttinger 6 of 9

What is xRooFit
• Attempt at a user interface for RooFit that I could use to add functionality I

wanted without creating custom classes that had to be persistified.
– My previous creation, TRooFit, involved defining a bunch of RooFit classes

(RooAbsPdf) that had ROOT-like interface (SetBinContent, Draw, etc).
– For xRooFit I created a “wrapper” class, xRooNode, that has methods that

behave according to the object they are wrapping.

• xRooNodes can have child xRooNodes (often are servers in the case of
RooAbsArg)

• Soon realized it was possible to add an xRooNode to ROOT’s TBrowser and
have it be browsable …

10/04/2024 Will Buttinger 7 of 9

https://gitlab.cern.ch/will/TRooFit

Demo….
• You should be able to run yourself with the StatAnalysis releases, available

e.g. on docker: docker run -it -e DISPLAY=host.docker.internal:0 gitlab-registry.cern.ch/atlas/statanalysis:xroofit

10/04/2024 Will Buttinger 8 of 9

Functionality in xRooFit
• Workspace building

– Can create/modify models and datasets

10/04/2024 Will Buttinger 9 of 9

Functionality in xRooFit
• Model navigation

– Finding out the nodes related to another node

10/04/2024 Will Buttinger 10 of 9

Functionality in xRooFit
• Workspace inspection

– Printing and visualizing contents, extracting yields etc

10/04/2024 Will Buttinger 11 of 9

Functionality in xRooFit
• Model Fitting

– NLL construction, minimization, dataset generation

10/04/2024 Will Buttinger 12 of 9

Lessons Learned
• The primary types of object in a statistical analysis are:

– Models (RooAbsPdf): functions of variables (obs and pars) representing a PDF
– Datasets (RooDataSet): observed or generated, toy or Asimov in the latter case
– FitResults (RooFitResult): hold a “model state” (set of parameter values along

with covariances between the parameters)
• Doing various hacky things to cram more info into FitResults at the moment

– NLLOptions (RooLinkedList): specialized options used in NLL function construct
– FitConfig (ROOT::Fit::FitConfig): minimization hyperparameters

• Terminology:
– vars: obs (globs and robs), pars (floats and consts)

• Would be nice if HistFactory copied over more metadata:
– Things like using histogram axis titles to set obs titles, a way to give channels a

title, etc. – all the RooFit objects can already carry this sort of thing.
– Consider using var attributes to flag the obs and pars rather than the

ModelConfig (how likely is it that a HistFactory model will be used with its obs
switched to pars or vice versa?)

10/04/2024 Will Buttinger 13 of 9

Future plans for xRooFit
• Would very much support adding functionality from xRooFit into ROOT

– But deciding which bits could be contentious, factorizing things may be possible,
not sure….

– Also how to add it – part of me thinks the functionality should go into the classes
xRooNode has been wrapping, but that might be changing RooFit too much, so
perhaps keeping it all in a wrapper class is most straightforward

• But conscious that xRooFit’s development has been somewhat organic and
in some areas its still evolving/changing
– Certainly things I would consider doing differently, would want to talk it through

with others
• Would like to have some more people using it, as that helps figure out what

functionality is good and what needs more work.
– StatAnalysis releases are there to help distribute this functionality while its in this

state of development.

10/04/2024 Will Buttinger 14 of 9

