
https://root.cern

ROOT
Data Analysis Framework

RooFit workshop 2024

Jonas Rembser

April 10 and 11, CERN 2024

https://root.cern

Workshop introduction

▶ RooFit workshop 2024 with RooFit developers and key
users and framework developers

▶ Goals:
● Showcasing new RooFit development
● Support experiments in making use of new

features
● Hear user stories and feedback on RooFit
● Plan RooFit development for the years ahead

▶ Structure:
● interactive: 50 % talks, 50 % questions and

discussions
● Thursday: developer presentations and

hackathon
● Friday: user presentations and planning

discussions
2

Agenda today:

Recent RooFit developments in detail

3

Recent RooFit developments in detail

About RooFit

4

○ RooFit: C++ library for statistical data analysis in ROOT
○ RooFit + RooStats + HistFactory
○ Supports diverse usecases with different performance requirements, e.g.:

○ Complicated binned models with many nuisance parameters but few data entries
○ Unbinned fits of analytic shapes to huge datasets

○ Recent development focused on:
○ Performance boost (preparing for larger datasets of HL-LHC)
○ More user friendly interfaces and high-level tools

RooFit development areas

In which areas does RooFit evolve (besides bugfixes)?

○ Not all areas are covered with the same level of activity
○ Some areas started to be covered only recently (automatic differentiation, interoperability)

Vectorization Gradient parallelization

GPU Implementation Pythonizations

Higher-level interfaces

Fit precision and correctness

Targeted optimizations for
expensive workflows

Automatic differentiation Interoperability

Performance optimization User interface and experience

Testing and benchmarking

5

Computation graphs in RooFit

RooFit evaluates expression trees many times for
different parameter values to find NLL minima.

6

Expression tree with observables x
and y for 10000 data points:
Gaussian(x|mu,sigma(y))

RooRealVar x{"x", "x", 0.0, -20.0, 20.0};
RooRealVar y{"y", "y", 0.0, 0.0, 1.0};

RooRealVar mu{"mu", "mu", 0.0, -20.0, 20.0};
RooFormulaVar sigma{"sigma", "1.0 + 2.0 * y", {y}};

RooGaussian gauss{"gauss", "gauss", x, mu, sigma};

Should have been easy to improve and do on GPU?!

1. Allocate memory for results
2. Call vectorized function/CUDA kernel for each node1

in topological order if values of children have
changed

1RooAbsArg in RooFit

Why rewriting RooFit NLL evaluation backend:

▶ Old RooFit computation: re-evaluate expression
tree of for each event

▶ Lots of function calls, no vectorization possible

Computation graphs in RooFit

RooFit model evaluation is not straight forward:

▶ Nodes often own other nodes that they evaluate
▶ These internal nodes are not registered in the graph
▶ Sometimes these nodes are even clones of entire subgraphs

7

gauss.getVal(/*normSet=*/x);

Evaluating model for given normalization
observables dynamically extends computation graph,
adding new disconnected nodes

Typical example: normalization integrals
(still harmless compared to other cases, but good for illustration)

Dynamic nature of computation graphs in RooFit makes
organizing data flow and computations in a heterogeneous
computing environment a challenge.

In other words: data structure for model building not
completely suitable for evaluation.

Computation graphs with fixed normalization

New mechanism to “compile” the graph for a
given normalization set to fulfill condition

8

auto nll = gauss.createNLL(
 *data,
 ConditionalObservables(y),
 EvalBackend("cpu")
); // create NLL object

nll->Print("v"); // get some info on the graph evaluation order

| Idx | Name | Class | Size | From Data |

1	y	RooRealVar	10000	1
2	sigma	RooFormulaVar	10000	0
3	mu	RooRealVar	1	0
4	x	RooRealVar	10000	1
5	gauss	RooGaussian	10000	0
6	gauss_Int[x]	RooRealIntegral	10000	0
7	gauss_over_gauss_Int[x]	RooNormalizedPdf	10000	0
8	nll	RooNLLVar	1	0

Each RooAbsArg involved in the
evaluation must be connected
to the top node via RooFits
client-server relations.

If your RooFit classes don’t fulfill this yet, you
should consider overriding:
RooAbsArg::compileForNormSet()

▶ Function called recursively in NLL
creation when using BatchMode()

▶ Result is ready for heterogeneous eval.
▶ Mechanism also used for the C++ code

generation from RooFit models that
enables automatic differentiation

This function can also be used to hook in graph optimizations.

https://root.cern.ch/doc/master/classRooAbsArg.html#a836768507f48ec05f8d1f6e122d7f64d

The vectorized evaluation functions

▶ The BatchMode backend uses new functions in RooAbsReal that you can override to add
support for CPU and GPU of your class:

● RooAbsReal::canComputeWithCuda ()
● RooAbsReal::doEval()

▶ Implementation of RooFit classes in ROOT uses RooBatchCompute library to implement
computeBatch() :

● Architecture-specific accelerator libraries for key functions
● Optimal one loaded at runtime, given current architecture
● More details in the ACAT 2021 talk

▶ Add the FastEvaluations stream to the RooMsgService the get info printouts when your
RooAbsArgs don’t support the new RooAbsReal::doEval():

● RooMsgService::instance().addStream(
 RooFit::Info, Topic(RooFit::FastEvaluations)
);

9

https://indico.cern.ch/event/855454/contributions/4596763/
https://root.cern.ch/doc/master/rf506__msgservice_8C.html

Benchmarking the RooFit test suite

▶ Plot shows relative time spent for minimizations in
stressRooFit tests for EvalBackend(“cpu”) and
“legacy”

▶ Significant speedup for almost all tests from a
combination of:
a. Vectorized evaluation
b. Optimized computation graphs
c. Less function calls

▶ Average speedup of 4.4x

The new CPU backend will be the default in ROOT 6.32!

10

Results obtained with ROOT 6.28.04 from CHEP 2023.

https://github.com/root-project/root/blob/master/test/stressRooFit_tests.h
https://indico.jlab.org/event/459/contributions/11570/

Overview on NLL evaluation backends

From the RooAbsPdf documentation:

11

https://root.cern.ch/doc/master/classRooAbsPdf.html#a52c4a5926a161bcb72eab46890b0590e

The CUDA evaluation backend

Great speedup of unbinned fits with many events with the CUDA backend:

12

benchRooFitBackends and RooFitUnBinnedBenchmarks in
rootbench repo, plotting script is in same directory. Try it yourself!
Remember to use a ROOT build with -Dcuda=ON

● Caveat: comparisons vs. one CPU thread, but
RooFit on CPU is notoriously difficult to parallelize

● Still potential for more speedup: no caching in GPU
backend yet

● Plan to also do numeric integrals on GPU in the
future to support more B-physics usecases, i.e.
amplitude fits.

https://github.com/root-project/rootbench/blob/master/root/roofit/roofit/benchRooFitBackends.cxx
https://github.com/root-project/rootbench/blob/master/root/roofit/roofit/RooFitUnBinnedBenchmarks.cxx

Example: RooAbsPdf with support for new evaluation

▶ Fastests way to get started implementing the interfaces: generate implementation code
with the RooClassFactory and use it as a template:

13

free function: inline double MyPdf_evaluate(double x, double alpha) {

 return (1+0.1*fabs(x)+sin(sqrt(fabs(x*alpha+0.1))));

}

double MyPdf::evaluate() const { return MyPdf_evaluate(x, alpha); }

void MyPdf::doEval(RooFit::EvalContext &ctx) const {

 std::span<const double> xSpan = ctx.at(x);

 std::span<const double> alphaSpan = ctx.at(alpha);

 std::size_t n = ctx.output().size();

 for (std::size_t i = 0; i < n; ++i) {

 ctx.output()[i] = MyPdf_evaluate(xSpan.size() > 1 ? xSpan[i] : xSpan[0],

 alphaSpan.size() > 1 ? alphaSpan[i] : alphaSpan[0]);

 }

}

void MyPdf::translate(RooFit::Detail::CodeSquashContext &ctx) const {

 ctx.addResult(this, ctx.buildCall("MyPdf_evaluate", x, alpha));

}

old interface:

vectorized:

to support “codegen”:
(see later slides on AD)

for CUDA, replace this with kernel call

broadcasting of scalar values

https://root.cern/doc/master/rf104__classfactory_8C.html

The new RooFit::Evaluator and CudaInterface

▶ Flags to fitTo() and createNLL() are only
scratching the surface. For frameworks, we
need low-level interfaces!

● The aforementioned
compileForNormSet() to build safe
computation graphs

● An experimental CudaInterface
abstraction to manage data on the GPU
without CUDA

● The new RooFit::Evaluator (formerly
known as RooFitDriver) to manage
vectorized evaluation on CPU or GPU (or
mixed)

Example on the right: evaluate RooFit model at many
points on the GPU.

14

namespace CudaInterface = RooFit::Detail::CudaInterface;

// Define model

RooRealVar x{"x", "x", 0, -10, 10};

RooRealVar mu{"mu", "mu", 0, 0, 10};

RooRealVar sigma{"sigma", "sigma", 3, 0.1, 10};

RooGaussian gauss{"gauss", "gauss", x, mu, sigma};

std::size_t numBins = 20;

x.setBins(numBins);

RooArgSet normSet{x};

// Create array of observable values

std::vector<double> xValsHost;

for (std::size_t i = 0; i < numBins; ++i) {

 x.setBin(i);

 xValsHost.push_back(x.getVal());

}

// Copy observable values to the array

CudaInterface::DeviceArray<double> xValsDevice{numBins};

CudaInterface::copyHostToDevice(xValsHost.data(), xValsDevice.data(), numBins);

// Compile pdf for evaluation with RooFit::Evaluator

std::unique_ptr<RooAbsReal> gaussCompiled{RooFit::Detail::compileForNormSet(gauss, normSet)};

// Instantiate Evaluator and set device input array

RooFit::Evaluator evaluator{*gaussCompiled, /*useGPU*/true};

evaluator.setInput("x", {xValsDevice.data(), numBins}, /*isOnDevice=*/ true);

// Evaluate

std::span<const double> deviceOut = evaluator.run();

// Copy back to host and print results

std::vector<double> hostOut(deviceOut.size());

CudaInterface::copyDeviceToHost(deviceOut.data(), hostOut.data(), numBins);

for (int i = 0; i < numBins; ++i) {

 std::cout << xValsHost[i] << " " << hostOut[i] << std::endl;

}

root [0]

Processing cuda_example.C...

[#1] INFO -- using CUDA computation

library

-9.5 0.000884418

-8.5 0.0024041

-7.5 0.00584778

-6.5 0.0127285

-5.5 0.0247917

-4.5 0.0432096

-3.5 0.0673907

-2.5 0.0940513

-1.5 0.117456

-0.5 0.131259

0.5 0.131259

1.5 0.117456

2.5 0.0940513

3.5 0.0673907

4.5 0.0432096

5.5 0.0247917

6.5 0.0127285

7.5 0.00584778

8.5 0.0024041

9.5 0.000884418

root [1] .q

https://root.cern/doc/master/classRooFit_1_1Evaluator.html

RooFit pythonizations

15

● PyROOT bindings more pythonic in 6.26
● Now you can for example:

● use Python keyword arguments instead
of RooFit command arguments

● pass around Python sets or lists instead
of RooArgSet or RooArgList

● pass Python dictionaries to functions that
take std::map<>

● implicitly convert floats to RooConstVar in
RooArgList/Set constructors

● All pythonizations are documented
● Some Pythonizations to help with C++/Python

lifetime issue
● Still there are memory leaks when

returning owning pointers
● See also this ROOT meeting presentation

Example code from the rf316_llratioplot.py tutorial
showcasing the pythonizations:
Example code from the rf316_llratioplot.py tutorial
showcasing the pythonizations:

Create background pdf poly(x)*poly(y)*poly(z)
px = ROOT.RooPolynomial("px", "px", x, [-0.1, 0.004])
py = ROOT.RooPolynomial("py", "py", y, [0.1, -0.004])
pz = ROOT.RooPolynomial("pz", "pz", z)
bkg = ROOT.RooProdPdf("bkg", "bkg", [px, py, pz])

Create composite pdf sig+bkg
fsig = ROOT.RooRealVar("fsig", "signal fraction",
 0.1, 0., 1.)
model = ROOT.RooAddPdf("model", "model",
 [sig, bkg], [fsig])

data = model.generate((x, y, z), 20000)

Make plain projection of data and pdf on x observable
frame = x.frame(Title="Projection on X", Bins=40)
data.plotOn(frame)

https://root.cern/doc/master/group__RoofitPythonizations.html
https://indico.cern.ch/event/1061658/
https://root.cern/doc/master/rf316__llratioplot_8py.html
https://root.cern/doc/master/rf316__llratioplot_8py.html

RooFit with NumPy, Pandas, and RDataFrame

16

● ROOT v6.26 new converters between
NumPy arrays/Pandas dataframes and
RooDataSet/RooDataHist

● No translation from RooDataHist to
dataframe because histograms are in
general multi-dimensional

● Tutorial in Python

● New RooRealVar.bins() function to get
RooFit bin boundaries as NumPy array

● Creating RooFit datasets from
RDataFrame

● Works for both RooDataSet and
RooDataHist

● Weighted filling still needs to be
implemented (does LHCb need this?)

● Tutorial in C++ and Python

from ROOT import RooRealVar, RooCategory, RooGaussian

x = RooRealVar("x", "x", 0, 10)
cat = RooCategory("cat", "cat",
 {"minus": -1, "plus": +1})

mean = RooRealVar("mean", "mean",
 5, 0, 10)
sigma = RooRealVar("sigma", "sigma",
 2, 0.1, 10)

gauss = RooGaussian("gauss", "gauss",
 x, mean, sigma)

data = gauss.generate((x, cat), 100)

df = data.to_pandas()

Example of exporting RooDataSet to Pandas:

https://root.cern.ch/doc/master/rf409__NumPyPandasToRooFit_8py.html
https://github.com/root-project/root/blob/master/tutorials/roofit/rf408_RDataFrameToRooFit.C
https://github.com/root-project/root/blob/master/tutorials/roofit/rf408_RDataFrameToRooFit.py

RooFit ATLAS benchmarks

RooFit development mainly done by the ROOT team…

…but it works best in collaboration with the experiments!

Example: hackathon with ATLAS in December 2021

▶ ATLAS physics coordination agreed to openly provide
Higgs combination with toy data (cutting edge
analyses!)

▶ Hackathon: ATLAS physicists and ROOT team together
work on making fits faster for three full days

Result: great speedups, avoiding unnecessary overhead, and
benchmark suite that inspires RooFit development to this day!

17

Output of the ATLAS Higgs combination benchmark:

Benchmarking workspace WS-Comb-STXS_toy.root...

Benchmark Time CPU

createNLL/0/iterations:1 56.8 s 56.8 s
createNLL_BatchMode/1/iterations:1 75.7 s 75.5 s
evaluateNLL/1/0 680 ms 679 ms
evaluateNLL_BatchMode/1/1 592 ms 592 ms
evaluateNLL_SingleKick/0/0 1.01 ms 1.01 ms
evaluateNLL_BatchMode_SingleKick/0/1 3.04 ms 3.03 ms

Initial NLL values
 - BatchMode("off"): 3719009.08412513602524996
 - BatchMode("cpu"): 3719009.08412513323128223

● Benchmark helped to bring createNLL time
from 30 to 1 min (ROOT 6.28 vs 6.24)

● Also evaluation time was reduced
● Result: workflows can be moved from grid to laptop

BatchMode(“cpu”) is not faster here, the complicated model with custom pdf
classes doesn’t support it well. But note that the NLL values agrees to 10-14!

https://github.com/root-project/rootbench/blob/master/root/roofit/atlas-benchmarks/roofitAtlasHiggsBenchmark.cxx

Automatic differentiation in RooFit

18

Automatic differentiation in RooFit

Likelihood minimization with AD in RooFit

RooFit has prototype support of for minimization with AD gradients generated by Clad.

▶ Activate by passing “codegen” or “codegen_no_grad” to the EvalBacked() argument of
RooAbsPdf::fitTo() / RooAbsPdf::createNLL():

● pdf.fitTo(data, RooFit::EvalBackend(“codegen”))

It’s a one-line change again!

▶ Under the hood, this generates, compiles and uses gradient code in the minimization
▶ It doesn’t work for all types of pdfs yet, but support is growing. In particular, standard HistFactory

models are fully supported.
▶ See also the RooAbsPdf documentation.

19

https://root.cern.ch/doc/master/classRooAbsPdf.html#a52c4a5926a161bcb72eab46890b0590e

RooFit AD in detail

▶ Helper class to manage jitted code: RooFuncWrapper (experimental)

▶ Takes the compiled computation graph as input (similar to RooFit::Evaluator)

▶ Generates the code that calls free functions for functions and integrals

▶ You can add support for the code generation by implementing RooAbsArg::translate()

▶ More details in the RooFit developer documentation

▶ The RooFuncWrapper provides the analytic gradient via RooAbsReal::gradient(double *)

gauss_compiled = ROOT.RooFit.Detail.compileForNormSet(gauss, ROOT.RooArgSet(x))

wrapper = ROOT.RooFuncWrapper("wrap", "wrap", gauss_compiled, ROOT.nullptr, ROOT.nullptr, False)

wrapper.createGradient() # calls Clad under the hood with the interpreter

wrapper.dumpCode() # inspect the generated code

wrapper.dumpGradient() # inspect the gradient code

grad_out = np.zeros(3)

wrapper.gradient(grad_out) # gradient for floating parameters in alphabetical order

20

The generated code dump:

double roo_func_wrapper_0(double *params, double const *obs, double const *xlArr)

{

 const double t3 = gaussianIntegral(-6.000000, 6.000000, params[0], params[1]);

 const double t4 = gaussianEvaluate(params[2], params[0], params[1]);

 const double t5 = t4 / t3;

 return t5;

}

https://root.cern/doc/master/classRooFuncWrapper.html
https://root.cern.ch/doc/master/classRooAbsArg.html#a94bd1132b7bef8be82f693a163f561a4
https://root.cern.ch/doc/master/group__roofit__dev__docs__ad.html
https://root.cern.ch/doc/master/classRooAbsReal.html#a90c456efc3878d22f8e6e5919a311d59

Manually evaluating gradients

▶ For advanced use, you can access the gradient values manually

▶ With the “codegen” backed, RooAbsPdf::createNLL() returns a RooFuncWrapper

▶ You can evaluate the gradient with RooAbsReal::gradient()

data = gauss.generate(x, 100)

nll = gauss.createNLL(data, EvalBackend ="codegen") # this is a RooFuncWrapper

n_vals = 200

mu_vals = np.linspace(mu.getMin(), mu.getMax(), n_vals)

f_vals = np.zeros(n_vals)

d_f_vals = np.zeros(n_vals)

Evaluate function and gradient

grad_out = np.zeros(2) # two parameters

for i in range(n_vals):

 mu.setVal(mu_vals[i])

 f_vals[i] = nll.getVal()

 grad_out[0] = 0.0

 nll.gradient(grad_out)

 d_f_vals[i] = grad_out[0] # mu is fist (parameters sorted alphabetically)

21

Advanced example - gradients of PDFs

MyRooFitEvaluator
(wraps RooFit::Evaluator and
RooFuncWrapper for AD):

import ROOT

import numpy as np

Some helpers for PyROOT

ROOT.gInterpreter.Declare("""

template<class T>

std::span<T> make_span(T * arr, std::size_t n) { return {arr, n}; }

"""

)

class MyRooFitEvaluator:

 def __init__(self, model, observables):

 observables = ROOT.RooArgSet(observables)

 self._obs_names = [x.GetName() for x in observables]

 self._model_compiled = ROOT.RooFit.Detail.compileForNormSet(model, observables)

 self._evaluator = ROOT.RooFit.Evaluator(self._model_compiled)

 wrapper_name = model.GetName() + "_wrapper"

 self._codegen_wrapper = ROOT.RooFuncWrapper(

 wrapper_name, wrapper_name, self._model_compiled, ROOT.nullptr, ROOT.nullptr, False

)

 self._codegen_wrapper.createGradient()

 self.variables = self._codegen_wrapper.getVariables()

 ROOT.SetOwnership(self.variables, True)

 self._var_names = [v.GetName() for v in self.variables]

 self._obs_indices = [self._var_names.index(name) for name in self._obs_names]

 self._inputs = {}

 def _set_input(self, name, arr):

 self._evaluator.setInput(name, ROOT.make_span["double"](arr, len(arr)), False)

 def eval(self, X):

 for i, name in enumerate(self._obs_names):

 arr = np.array(X[:, i], copy=True)

 self._inputs[name] = arr

 model._set_input(name, arr)

 return np.array(self._evaluator.run())

 def dump_code(self):

 self._codegen_wrapper.dumpCode()

 def dump_gradient_code(self):

 self._codegen_wrapper.dumpGradient()

 def eval_gradient(self, X):

 # In the future, this will also be managed by the RooFit::Evaluator in C++

 var_names = self._var_names

 n_vars = len(self.variables)

 grad_in = np.zeros(n_vars)

 grad_out = np.zeros((len(X), n_vars))

 for j in range(n_vars):

 grad_in[j] = self.variables[j].getVal()

 for i in range(len(X)):

 for j, k in enumerate(self._obs_indices):

 grad_in[k] = X[i, j]

 self._codegen_wrapper.gradient(grad_in, grad_out[i])

 out = {}

 for j in range(n_vars):

 out[self._var_names[j]] = np.array(grad_out[:, j], copy=True)

 return out

22

x = ROOT.RooRealVar("x", "x", -6, 6)

mu = ROOT.RooRealVar("mu", "mu", 0, -6, 6)

sigma = ROOT.RooRealVar("sigma", "sigma", 1.5, 0.1, 10)

gauss = ROOT.RooGenericPdf("gauss", "std::exp(-0.5*(x[0]-x[1])*(x[0]-x[1])/(x[2]*x[2]))",

 [x, mu, sigma])

model = MyRooFitEvaluator(gauss, observables=[x]) # Object that manages pdf evaluation

model.variables.Print() # Get variables information

x_vals = np.linspace(x.getMin(), x.getMax(), 200) # 1-d vector

X_vals = np.expand_dims(nx_vals, axis=1) # column vector

f_vals = model.eval(X_vals) # gauss(x)

d_f_vals = model.eval_gradient(X_vals)["x"] # d gauss(x) / dx

▶ Example of manually evaluating a pdf and its gradient
▶ RooFit::Evaluator wraps vectorized eval., RooFuncWrapper

takes care of gradient generated with Clad
▶ Using RooGenericPdf to showcase how the gradient code includes

the numeric normalization integral!
▶ In future: generalize RooFit::Evaluator to reduce boilerplate code

RooFit AD - benchmarking

▶ In simple benchmarks scaled to many
parameters, minimization time with MIGRAD
can be significantly sped up

● Plot on the top right (binned Gauss + exp.
in 100 channels, from CHEP 2023)

▶ In the real-world ATLAS HistFactory example,
speedup for BFGS steps in Minuit 2 is sped up
by factor 4

● Table on the bottom right

▶ However, some fits spend most time in the
initial search for a convex starting point
(aka. seeding in Minuit)

▶ JIT time for big models can become very long:
the current bottleneck of the approach

● Plan to split NLL up in smaller functions
that compile faster

23

ATLAS HistFactory (5 channels)

 Num. diff [ms] AD [ms]

--

Function JIT time: - 365

Clad JIT time: - 26270

IR to machine code time: - 21079

Time for Seeding: 4497 4639

Time for Minimization: 797 211

https://github.com/root-project/rootbench/blob/master/root/roofit/roofit/benchCodeSquashAD.cxx
https://github.com/root-project/rootbench/blob/master/root/roofit/roofit/benchCodeSquashAD.cxx
https://indico.jlab.org/event/459/contributions/11581/
https://github.com/root-project/rootbench/blob/master/root/roofit/atlas-benchmarks/roofitAtlasHiggsBenchmark.cxx

Conclusions so far

24

Conclusions so far

Conclusions so far

▶ RooFit development focused on performance in the last years:
● new vectorizing evaluation backed that is the default in ROOT 6.32
● CUDA implementation of new evaluation backend
● initial support for automatically-generated gradients
● With the new interfaces like RooFit::Evaluator and compileForNormSet(), we

make these features available to power users and framework developers at a lower level

▶ On the interfaces side, the focus was Python:
● interoperability with scientific Python ecosystem
● pythonizations for standard RooFit functions

▶ Several benchmarking projects were initiated:
● Benchmark suite with real-life ATLAS models
● Comparative benchmark suite with other Python tools

25

Likelihood serialization with HS3

Likelihood serialization with HS3

26

RooFit HS3 example

Example to showcase the layout of the HS3 standard
two-channel model with measurement data

Some concepts map directly to RooWorkspaces:

▶ RooAbsPdfs:
 distributions

▶ RooAbsReals:
▶ functions
▶ RooRealVars:

 initial value in “parameter_points”, range in “domains”
▶ RooDataHist and RooDataSet:

 data

Some new ideas to aid likelihood definition:

▶ likelihoods: define combined likelihood terms
closest RooFit concept: RooSimultaneous + combined
data

▶ analyses:
define likelihood terms, plus POIs, nuisances, etc.
closest RooFit concept: RooStats::ModelConfig

This example is the abbreviated output of the testHS3SimultaneousFit unit
test.

27

"distributions": [
 { "name" : "sig_1", { "name": "bkg_1",
 "type" : "gaussian_dist", "type": "exponential_dist",
 "x" : "x_1", "x" : "x_1",
 "mean" : "mean", "c" : "c_1"
 "sigma": "sigma_1" },
 },
 { "name" : "sig_2", { "name" : "bkg_2",
 "type" : "crystalball_dist", "type" : "polynomial_dist",
 "m" : "x_2", "x" : "x_x",
 "m0" : "mean", "coefficients": ["3", "a_1", "a_2"]
 "sigma": "sigma_2", },
 "alpha": "alpha",
 "n" : "ncb"
 },
 { "name": "model_1", { "name": "model_2",
 "type": "mixture_dist", "type": "mixture_dist",
 "coefficients": ["n_sig_1", "n_bkg_2"], "coefficients": ["n_sig_2", "n_bkg_2"],
 "summands": ["sig_1", "bkg_1"] "summands": ["sig_2", "bkg_2"]
 }, }
],
"functions": [],
"likelihoods": [
 { "data": ["data_channel_1", "data_channel_2"],
 "distributions": ["model_channel_1", "model_channel_2"],
 "name": "my_likelihood"
 }
],
"analyses": [
 { "name": "my_analysis",
 "likelihood": "my_likelihood",
 ... etc. ...
 }
],
"data": [
 { "name": "data_channel_1",
 ... content …
 },
 { "name": "data_channel_2",
 ... content ...
 }
],
"domains": [...],
"parameter_points": [...]

https://github.com/root-project/root/blob/master/roofit/hs3/test/testHS3SimultaneousFit.cxx

RooFit HS3: new HistFactory model-building

▶ ROOT ships with the HistFactory package:
● higher-level interface to build binned RooFit pdfs

from template histograms with systematic
uncerts.

▶ In HS3, this high-level pdf is called histfactory_dist
▶ Code to read histfactory_dist from JSON is a

complete rewrite of the HistFactory model building
● Could replace existing way to specify HistFactory

models via XML files or C++ code

▶ The structure of the histfactory_dist is inspired by
the pyhf format for easier interoperability

● See this pyhf example for comparison

HistFactory models can easily be combined with other pdfs
in the RooFit HS3 framework!

28

"distributions": [
{

 "name": "model_channel1",
 "axes": [
 {
 "name": "obs_x_channel1",
 "max": 2.0,
 "min": 1.0,
 "nbins": 2
 }
],
 "samples": [
 {
 "data": {
 "contents": [20, 10]
 },
 "modifiers": [
 {
 "data": {
 "hi": 1.05,
 "lo": 0.95
 },
 "name": "syst1",
 "type": "normsys"
 },
 {
 "name": "mu",
 "type": "normfactor"
 }
],
 "name": "signal"
 }
 ... background templates ...
],
 "type": "histfactory_dist"

}
]

Abbreviated model from the rf515 tutorial

https://root.cern.ch/doc/master/group__HistFactory.html
https://github.com/scikit-hep/pyhf
https://scikit-hep.org/pyhf/likelihood.html#toy-example
https://github.com/root-project/root/blob/master/tutorials/roofit/rf515_hfJSON.json
https://root.cern/doc/master/rf515__hfJSON_8py.html

HS3 references and news

● Most recent presentation by Carsten
● take a look at the overleaf or GitHub to view the current draft or follow the discussions!

● Have received a substantial set of comments from CMS, working to implement them and
formulate replies

● Have received suggestions from Mikhail on amplitude models for hadron physics, available
online for discussion

● ATLAS close to publishing first results based on HS3 v0.2
● Looking forward to prepare draft v0.3 before summer

29

https://docs.google.com/presentation/d/1GP9n7TQXfog7iwW4_cnl-_RaDh-TxXP-R2LE6xus25o/edit#slide=id.p
https://www.overleaf.com/project/63da374d94174e292e0fe9d9
https://github.com/hep-statistics-serialization-standard/hep-statistics-serialization-standard
http://www.symmetrymagazine.org/

Making HS3 in RooFit a priority

▶ Should we make the JSON format the default serialization of RooFit at some point?

Which problems would it solve or introduce?

▶ Suggestion: improve test coverage by roundtripping every model in every ROOT unit test

30

Possible future developments

31

Possible future developments

RooFit comparative benchmark suite

The RooFit part of the ROOT 2024 plan of work: priority

32

● The CUDA points can be worked on by other ROOT core team members too
● Reduce JITing time for AD in RooFit is important for ICHEP 2024 presentation on RooFit AD
● “Group similar PDFs to speed up evaluation” means here to compactify HistFactory

models

Python functions in RooFit

▶ It would be very nice if we can use Python functions in the RooFit world, like this:

33

data = gauss.generate(x, 100)

samples = data.to_numpy()["x"]

from sklearn.neighbors import KernelDensity

kde = KernelDensity(kernel="gaussian",

 bandwidth=0.2).fit(samples.reshape(-1, 1))

def func(x):

 return np.exp(kde.score_samples([[x]]))

kde_pdf = make_pdf_instance("kde_pdf", "kde_pdf", func, [x])

c1 = ROOT.TCanvas()

frame = x.frame()

data.plotOn(frame)

kde_pdf.plotOn(frame)

How was this possible?

Virtual dispatching from C++ to Python with cppyy technology!

Shoutout to Vanya who pioneered this idea in his ostap framework

34

class PyPdf : public RooAbsPdf {

public:

 PyPdf(const char *name, const char *title, RooArgList

&varlist)

 : RooAbsPdf (name, title), m_varlist ("!varlist" ,

"All variables(list)" , this) {

 m_varlist.addTyped <RooAbsReal >(varlist);

 }

 // copy constructor

 PyPdf(const PyPdf &right, const char *name = nullptr)

 : RooAbsPdf (right, name), m_varlist ("!varlist" ,

this, right.m_varlist) {}

 PyPdf *clone(const char *name) const override { return

new PyPdf(*this, name); }

 const RooArgList &varlist() const { return m_varlist;

}

 // the actual evaluation of function (will be

redefiend in python) !

 Double_t evaluate () const override { return 1; }

protected:

 RooListProxy m_varlist;

};

def make_pdf_instance(name, title, func, variables):

 class MyPdf(ROOT.PyPdf):

 def __init__(self, name, title, variables):

 super(MyPdf, self).__init__(name, title,

ROOT.RooArgList(variables))

 def evaluate(self):

 variables = self.varlist()

 return func(*(v.getVal() for v in self.varlist()))

 def clone(self, newname=False):

 cl = MyPdf(newname if newname else self.GetName(),

self.GetTitle(), self.varlist())

 ROOT.SetOwnership(cl, False)

 return cl

 return MyPdf(name, title, variables)

https://github.com/OstapHEP/ostap

Using RooFit functions in Python

▶ In principle possible already, just not very pythonic
▶ Also here, pythonizations in the RooFit::Evaluator could help
▶ Benchmark to know if your interface is good:

● RooFit NLL can be used in context of other Python libraries (e.g. scipy minimizers)
● Minimizing RooFit likelihoods with iminuit would be a nice proof of concept

▶ I suggest to make this possible for ROOT 6.34

35

https://github.com/scikit-hep/iminuit

RooFit and SymPy

▶ Presentation at PyHEP 2023 on using SymPy expressions in RooFit
▶ This can help with amplitude analysis using AmpForm, which generates SymPy objects

36

import sympy as sp

x, mu = sp.symbols('x mu')

gauss = sp.exp(-0.5*(x - mu)**2)

c_code = sp.ccode(gauss)

ws = ROOT.RooWorkspace()

ws.factory(f"CEXPR::gauss('{c_code}', x[0., 10.], mu[5., 0., 10.])")

https://github.com/guitargeek/roofit-pyhep-2023-talk/blob/main/roofit-pyhep-2023-talk.ipynb
https://www.sympy.org/en/index.html
https://ampform.readthedocs.io/stable/index.html

RooFit comparative benchmark suite

▶ Summer student project from 2023 (report, also in GitLab repository)
▶ Work didn’t continue after that project
▶ One of the resulting plots (HistFactory benchmarks)

37

https://cds.cern.ch/record/2872117/files/Summer_Student_Report_Daniel_Werner.pdf
https://gitlab.cern.ch/dawerner/statanabenchmark/-/tree/master

Memory safe interfaces

▶ Starting with 6.32, you can define the ROOFIT_MEMORY_SAFE_INTERFACES macro restrict RooFit to
memory safe interfaces (see release notes)

▶ This coverage of this feature will gradually expand and hopefully make memory leaks
impossible in the future

▶ Maybe make memory safe mode the default by ROOT 7?

38

https://root.cern/doc/master/release-notes.html#compile-your-code-with-memory-safe-interfaces

New training material

▶ Existing RooFit tutorials are more “atomic”, they each show a feature but don’t necessarily
give an overview

▶ I started to put together new Jupyter notebooks for giving an overview on RooFit
▶ We planned in ROOT to record ourselves presenting such tutorials and publish the videos

on the internet
▶ Worth pursuing this further for RooFit with more specific tutorials?

39

https://root.cern/doc/master/group__tutorial__roofit.html
https://github.com/root-project/training/tree/master/RooFit

Ideas already discussed on the workshop

▶ Speeding up Hessian evaluation
▶ Upstream discrete profiling and analytical BB-lite from HiggsCombine
▶ Gather examples of non-converging fits with explanations, also becoming tests in ROOT
▶ Better support for chi-square fitting, on equal footing with NLL
▶ Also add documentation for more niche features of RooFit
▶ Better support for toys
▶ Better plotting functionality
▶ Improve minimizer documentation
▶ etc.

40

Conclusions

41

▶ RooFit is constantly evolving, but can evolve in many different directions
▶ We need prioritizing
▶ Let’s jump to the RooFit planning google doc to do that!

https://docs.google.com/document/d/1tPtvQ23uzJLfc5arpG4FVxlr0visfDc1CEAnFD0-5K4/edit?usp=sharing

