L M PRINCETON
UNIVERSITY

Clad, compile-time automatic differentiation for C++

COMPILER

C|R

RESEARCH

Vaibhav Thakkar

(Princeton University)

\31 Claod

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad
https://github.com/vgvassilev/clad

Brief Intro of Automatic Differentiation

X

flx) = e

Symbolic via Wolfram Alpha

Figure out the analytical fn

// E(x)=e" (e”(e"(e" (e"x))))
#include <cmath>
double f (double x, int N=5) {
double result = x;
for (unsigned i = 0; 1 < N;
result = std::exp(result);
return result;

i++)

AD

i Handcode

X X
e€ e€ X x
d (eee) — pxte® +e +e® +e’

double f dx(double x, int N=5) ({
double result = x;

double d result = 1;
for (unsigned 1 = 0; 1 < N; i++)
result = std::exp(result) ;

d result *= result;

}

return d result;

}

{

Reference: V. Vassilev - Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad

Crux of AD - Computational graph + Chain rule

y = £(x0, x1)
z = gl(y)
379

G ’ G owl 0dwladz dy

0x0 0z dydx0

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad

About Clad

e Source transformation based AD tool for C++
o Runs at compile time - clad generates the code for derivatives using the Abstract Syntax Tree
(AST) of the original / primal function as the computational graph.

o Implemented as a Clang plugin - uses the APls and robust infrastructure of LLVM/Clang for
traversing over the parsed graph and generating the derivative code.

o Aimsto enable differentiable programming utilizing all of the features and power of C++.

e Supports both forward and reverse mode, also provide functionality for higher order
derivatives, Jacobians and Hessians.

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad

About Clad - usage example

// Source.cpp
#include "clad/Differentiator/Differentiator.h"
#include <iostreams>

double f (double x, double y) {

return x*y;

} clang++ -I clad/include/ -fplugin=clad.so Source.cpp
double main() {
// Call clad to generate the derivative of f wrt x.
auto f dx = clad::differentiate(f, "x"); 4 // df/dx for (x,y) = (3, 4)
6 // df/dx for (x,y) = (9, 6)
// Execute the generated derivative function.
std::cout << f dx.execute(/*x=%/3, /*y=*/4) << std::endl; double f darg0 (double x, double y) {
std::cout << f dx.execute(/*x=%*/9, /*y=*/6) << std::endl; double d x = 1;
double d y = 0;
// Dump the generated derivative code to stdout. return d x * y + x * _d y;
f dx.dump() ; }

}

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad

Benefits of Clad

Readable (hence easily debuggable) generated code for gradient computation.

Compile time generation of differentiation code enables:

o Support for control flow expression - not possible with operator overloading approaches.
Optimization capabilities of the Clang/LLVM Infrastructure enabled by default.
Diagnostic messages when differentiation fails.

Compile time evaluation - templates, consteval

O O O

Easy integration with cling and ROOT.

Extra capabilities for customization, experimentation and improving the efficiency of the generated
code....

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad

Providing custom derivatives

e Some use cases:
o Callinga library function whose definition is not available.
o Efficiency reasons - you have a better way.
o Implicit function to be differentiated - for ex. requires solving some maximization problem

double my pow (double x, double y) {
// .. custom code here ..

}

namespace clad {
namespace custom derivatives {

double my pow darg0 (double x, double y) {return y * my pow(x, y - 1);} // 0f/ox.
double my pow dargl (double x, double y) {return my pow(x, y) * std::log(x);} // 0f/dy.

b}

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad

To Be Recorded (TBR) analysis in reverse mode

TBR analysis off TBR analysis on
void f_exp_grad(...) { void f_exp_grad(...) {
/I forward pass /I forward pass
Original function
clad::tape<double> _t1 = {}; // used to store x _t0=0;
double f_exp(double x, size_t N){ _t0=0; for (i=0;i < N; ++i) {
for (int i=0; i < N; ++i) for (i =0;1<N; ++i){ {0+
X=2*x _tO++; X=2*X;
return x: clad::push(_t1, x); // x is only transformed linearly so it's }
} X=2%*X; // value is not needed in the reverse pass
} I reverse pass
for (; _t0; _t0--){
/l reverse pass
for (; _t0; _t0--) { }
In RooFit, more than 30% —-i; Il'iis never used to compute the derivatives }
code size reduction. x = clad::pop(_t1); // no need to restore x
3x speedup injit time.) }

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad

E11:

Live Demo - online service to try out Clad

AD Tutorial - CLAD & Jupyter Notebook

xeus-cling provides a Jupyter kernel for C++ with the help of the C++ interpreter cling and the native implementation of the Jupyter protocol xeus.

Within the xeus-cling framework, Clad can enable automatic differentiation (AD) such that users can automatically generate C++ code for their computation of derivatives of their functions.

#include "clad/Differentiator/Differentiator.h" B MV & T
#include <iostream>

Forward Mode AD

For a function f of several inputs and single (scalar) output, forward mode AD can be used to compute (or, in case of Clad, create a function) computing a directional derivative of f with respect to a single specified input variable. Moreover, the generated derivative function has
the same signature as the original function f, however its return value is the value of the derivative.

double fn(double x, double y) {
return x*x*y + y*y;

auto fn_dx = clad::differentiate(fn, "x");

fn_dx.execute(5, 3)

30.000000

Binder - Jupyter Notebook with Clad

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad
https://mybinder.org/v2/gh/vgvassilev/clad/master?labpath=%2Fdemos%2FJupyter%2FIntro.ipynb

Future Work

Adding support for stl containers - std::vector, std::array, std::queue

Activity analysis to further improve the generated code, only differentiating statements which
contribute towards the final result.

Improving pointer support - especially tricky in reverse mode AD.

Better support for compile time evaluations of generated code - consteval and constexpr.

Many more...

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad

Thank you

Questions or Comments ?

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

https://github.com/vgvassilev/clad

