
RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

Clad, compile-time automatic differentiation for C++

Vaibhav Thakkar
(Princeton University)

https://github.com/vgvassilev/clad
https://github.com/vgvassilev/clad

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

Brief Intro of Automatic Differentiation

Reference: V. Vassilev – Accelerating Large Scientific Workflows Using Source Transformation Automatic Differentiation

// f(x)=e^(e^(e^(e^(e^x))))
#include <cmath>
double f (double x, int N=5) {
 double result = x;
 for (unsigned i = 0; i < N; i++)
 result = std::exp(result);
 return result;
}

AD

double f_dx(double x, int N=5) {
 double result = x;
 double d_result = 1;
 for (unsigned i = 0; i < N; i++) {
 result = std::exp(result);
 d_result *= result;
 }
 return d_result;
}

Figure out the analytical fn

Symbolic via Wolfram Alpha

Handcode

https://github.com/vgvassilev/clad

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

Crux of AD - Computational graph + Chain rule

x0

zy

x1

w0

w1

y = f(x0, x1)
z = g(y)
w0, w1 = l(z) zy

w0

w1

x0

x1

https://github.com/vgvassilev/clad

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

About Clad
● Source transformation based AD tool for C++

○ Runs at compile time - clad generates the code for derivatives using the Abstract Syntax Tree

(AST) of the original / primal function as the computational graph.

○ Implemented as a Clang plugin - uses the APIs and robust infrastructure of LLVM/Clang for

traversing over the parsed graph and generating the derivative code.

○ Aims to enable differentiable programming utilizing all of the features and power of C++.

● Supports both forward and reverse mode, also provide functionality for higher order
derivatives, Jacobians and Hessians.

https://github.com/vgvassilev/clad

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

About Clad - usage example
// Source.cpp
#include "clad/Differentiator/Differentiator.h"
#include <iostream>

double f (double x, double y) {
 return x*y;
}

double main() {
 // Call clad to generate the derivative of f wrt x.
 auto f_dx = clad::differentiate(f, "x");

 // Execute the generated derivative function.
 std::cout << f_dx.execute(/*x=*/3, /*y=*/4) << std::endl;
 std::cout << f_dx.execute(/*x=*/9, /*y=*/6) << std::endl;

 // Dump the generated derivative code to stdout.
 f_dx.dump();
}

4 // df/dx for (x,y) = (3, 4)
6 // df/dx for (x,y) = (9, 6)

double f_darg0 (double x, double y) {
 double _d_x = 1;
 double _d_y = 0;
 return _d_x * y + x * _d_y;
}

clang++ -I clad/include/ -fplugin=clad.so Source.cpp

https://github.com/vgvassilev/clad

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

Benefits of Clad
● Readable (hence easily debuggable) generated code for gradient computation.

● Compile time generation of differentiation code enables:
○ Support for control flow expression - not possible with operator overloading approaches.

○ Optimization capabilities of the Clang/LLVM Infrastructure enabled by default.

○ Diagnostic messages when differentiation fails.

○ Compile time evaluation - templates, consteval

● Easy integration with cling and ROOT.

● Extra capabilities for customization, experimentation and improving the efficiency of the generated

code ….

https://github.com/vgvassilev/clad

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

Providing custom derivatives
● Some use cases:

○ Calling a library function whose definition is not available.

○ Efficiency reasons - you have a better way.

○ Implicit function to be differentiated - for ex. requires solving some maximization problem

double my_pow (double x, double y) {
 // … custom code here …
}

namespace clad {
namespace custom_derivatives {

double my_pow_darg0(double x, double y) {return y * my_pow(x, y - 1);} // ∂f/∂x.
double my_pow_darg1(double x, double y) {return my_pow(x, y) * std::log(x);} // ∂f/∂y.
}}

https://github.com/vgvassilev/clad

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

To Be Recorded (TBR) analysis in reverse mode

double f_exp(double x, size_t N) {
 for (int i=0; i < N; ++i)
 x = 2 * x;
 return x;
}

void f_exp_grad(...) {
 // forward pass
 …
 _t0 = 0;
 for (i = 0; i < N; ++i) {
 _t0++;
 x = 2 * x;
 }
 …
 // reverse pass
 for (; _t0; _t0--) {
 …
 }
}

void f_exp_grad(...) {
 // forward pass
 …
 clad::tape<double> _t1 = {}; // used to store x
 _t0 = 0;
 for (i = 0; i < N; ++i) {
 _t0++;
 clad::push(_t1, x); // x is only transformed linearly so it’s
 x = 2 * x; // value is not needed in the reverse pass
 }
 …
 // reverse pass
 for (; _t0; _t0--) {
 --i; // i is never used to compute the derivatives
 x = clad::pop(_t1); // no need to restore x
 …
 }
}

Original function

TBR analysis off TBR analysis on

In RooFit, more than 30%

code size reduction.

3x speedup in jit time.

https://github.com/vgvassilev/clad

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

Live Demo - online service to try out Clad

Binder - Jupyter Notebook with Clad

https://github.com/vgvassilev/clad
https://mybinder.org/v2/gh/vgvassilev/clad/master?labpath=%2Fdemos%2FJupyter%2FIntro.ipynb

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

Future Work
● Adding support for stl containers - std::vector, std::array, std::queue

● Activity analysis to further improve the generated code, only differentiating statements which
contribute towards the final result.

● Improving pointer support - especially tricky in reverse mode AD.

● Better support for compile time evaluations of generated code - consteval and constexpr.

● Many more …

https://github.com/vgvassilev/clad

RooFit Workshop 2024 - Clad, compile-time automatic differentiation for C++ - Vaibhav Thakkar

Questions ?Thank you

 Questions or Comments ?

https://github.com/vgvassilev/clad

