

RooFit in ATLAS Top group

Tomas Dado (CERN)

Introduction

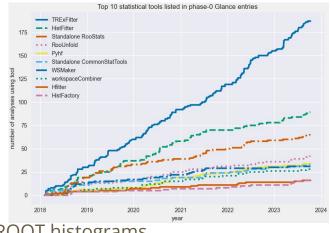
- ATLAS top group has diverse physics programme
 - High stat. SM properties measurements
 - Top mass measurements
 - Inclusive/differential ttbar cross-section
 - Yukawa coupling
 - Charge asymmetry
 - **....**
 - Low stat. SM measurements
 - T(tbar)+X (X=Z,W,ttbar, ...) cross-sections
 - Searches
 - FCNC searches with top quarks
- Many analyses require "fitting"
 - I.e. parameter extraction from data

Different statistical approaches in the top group

- Most common approach: binned-likelihoods
 - One notable exception top mass measurements (unbinned-likelihood)

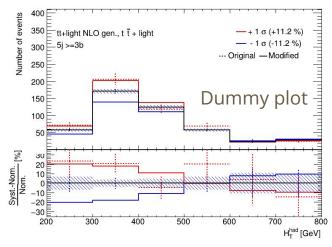
Unfolding

- **IBU** commonly used for inclusive ttbar(+jets)
 - RooUnfold implementation
- o FBU (Fully Bayesian Unfolding) used in a handful of measurements
 - Does not use ROOT
- Profile-likelihood unfolding
 - RooFit/HistFactory-like implementation

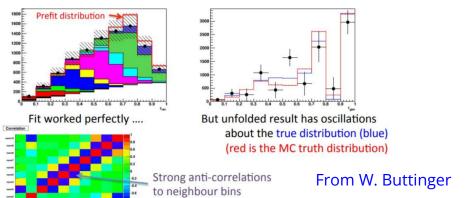

• Non-unfolding measurements

- Profile-likelihood fits HistFactory-like
 - Pure HistFactory
 - HistFactory with "extensions" more details in the next slides
- Pseudo-experiment approaches
 - Often custom code

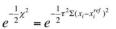
TRExFitter

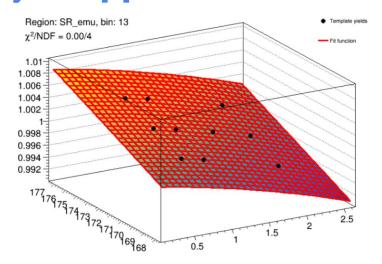

- Most commonly used tool for binned profile-likelihood fits
- A convenient tool to run HistFactory-like fits
- The tool:
 - Human readable text config (custom, yaml-like format)
 - No code needs to be written
 - Can read ntuples (very inefficient, uses ttree->Draw) or ROOT histograms
 - Can produce plots for the inputs +- 1 sigma variations
 - Can produce the WS (HistoFactory-like)
 - Can run the fit (minimisation)
 - Can produce pre/post-fit plots (including variables/regions not used in the fit)
 - Can run significance/limit estimate (using xRooFit)
 - Can produce systematic breakdown
 - "Ranking" of each NP
 - "Grouped impact" for a set of NPs
 - Can produce "likelihood scan" (including 2D scan)

TRExFitter as HistFactory wrapper


Preprocessing of histograms

- Smoothing (reduce MC stat impact)
- Pruning (remove noise, speed up)
- Symmetrisation
- 0 ...
- Pass histograms to HistFactory to <u>build the model/WS</u>
- In some setups: heavily leveraged "AddPreprocessFunction()"
 - Allows huge flexibility
 - Fit charge asymmetry instead of cross-section
 - Template fits (e.g. top quark mass, CP-odd Higgs, ...)
 - EFT limit extraction!
 - Really changed the fit from "cross-section" to "almost any parameter that you can get from the cross-section"


TRExFitter as not only HistFactory wrapper


- Sometimes the HistFactory model is too limiting
 - **Reparametrisation of ShapeFactors** is needed
 - Template parametrisation per bin
 - Replace ShapeFactors with the formulae
 - Additional likelihood terms are needed
 - E.g. regularisation in the unfolding

- Entropy- based term
- Derivative-based term : Tikhonov $e^{-\frac{1}{2}\chi^2} = e^{-\frac{1}{2}\tau^2 \sum (x_i x_i^{ref})^2}$

- Done by RooFit workspace manipulations
 - Not calling HistFactory methods

Usage of RooStats in TRExFitter

- Using RooStats to build the WS
 - HistFactory methods
- Using ModelConfig in multiple places for metadata bookkeeping
- Limits/significance calculation with toys (not-asymptotics)
 - Using RooStats methods/classes for the limit estimate
 - FrequentistCalculator
 - ProfileLikelihoodTestStat
 - ToyMCSampler
 - HypoTestInverter
 - HypoTestInverterResult
 - Using xRooFit for the asymptotic estimate

Some observations

Reasons I have heard why people prefer/like TRExFitter

- Simple configuration no code needed to make paper-quality plots/results
- Good support if things do not work (mattermost and mailing list fast turnaround)
 - Something to consider for ROOT (e.g. mattermost support channel)?
- Can do many things
 - Not just results, but validation plots, pre-processing etc.
- Allows extensions i.e. not "just" HistFactory model
 - Opportunities to use a known tool for new types of measurements
- Relatively decent documentation (for HEP standards)

What people do not like about TRExFitter

- The code is huge (50k+ lines of c++) and often not so nice
- Sometimes we break things, sometimes changes in ROOT break things (e.g. fit no longer converges when it converged in the previous version)

Relatively long turnaround time for ROOT releases

- o Issues are often fixed fast, but releases can take many months
 - Often build our own untagged versions which is not great
- We often get questions about statistics and not related to TRExFitter or Roofit

Possible future improvements (RooFit)

<u>Performance improvements</u>

- o Parallelisation, GPU support, autodiff, ...
- Often multiple fit runs that are close (e.g. limits, LH scan)
 - Possible speed up as the minima should not be far apart?

Minuit2/minimisation improvements?

- E.g. recent strategy 3 addition helped to solve a lot of numerical problems
 - More improvements possible on numerical precision?
- Lacking documentation for the strategy descriptions (or hard to find)

• Better support for toys?

- E.g. LEE estimate? More-dimensional LEE estimate?
- Toys for postfit yield estimate per bin?
 - Using bootstrap sampling
- Should be kept outside of RooFit e.g. in xRooFit?

General

- Often running EFT fits non-quadratic NLL problematic?
- Documentation for less-common RooFit functions/methods

What can we (ATLAS) do to help?

- Would making our code (TRExFitter) public be helpful/useful?
- Do you need more realistic WSs?
 - Only problematic ones?
 - Or also "standard" WS that have no obvious issues?
- Are you interested in some performance numbers?
 - E.g. running time/memory consumption?

We are willing and happy to help!

