
Parallel RooFitting:
Put your CPUs to use

Patrick Bos (NL eScience Center),
Zef Wolffs (Nikhef),

Wouter Verkerke (Nikhef),
et al.

Live demo… on your laptop!

• Requirements:
• ROOT 6.28+ built with -Droofit_multiprocess=ON

• Check your build!
• We’ll come back to the actual demo later

sneak preview:
https://gist.github.com/egpbos/03003b273b8bb2407aa64a575a99a25b
(or go to https://gist.github.com/egpbos, the top one)

Background
• In high energy physics, hypothesis testing is done by fitting likelihood models to datasets

• In principle, parallelizing this problem is not hard, remember the likelihood model

• The evaluation of each event can be calculated fully independently and thus in parallel
• Even more so, likelihood models in high energy physics are generally also constructed

from independent components which could also be evaluated in parallel

3

−log𝐿(𝜃|𝐱) = −log ∏
!"#

$
𝑝(𝐱!|𝜃) = − ∑

!"#

$
𝑙𝑜𝑔(𝑝(𝐱!|𝜃)) = −𝑙𝑜𝑔(𝑝(𝐱%|𝜃)) − 𝑙𝑜𝑔(𝑝(𝐱&|𝜃))−. . .

parallel task 1 parallel task 2

simplified likelihood model

independent
evaluations

Background
• In practice though, models quickly grow quite convoluted, Higgs combination fits for example

incorporate hundreds of smaller likelihood models with varying structures and data

4

Recent Higgs combination pdf computational graph (image courtesy of Nicolas Morange)

Background
• In practice though, models quickly grow quite convoluted, Higgs combination fits for example

incorporate hundreds of smaller likelihood models with varying structures and data
• This makes it hard to find any general parallelization strategy with optimal load balancing

5

• The above likelihood models are those with the longest fit durations, currently taking hours
• The challenge at hand: Developing a multiprocessing strategy to significantly speed

up these complex (Higgs comb type) fits while not compromising on robustness

Recent Higgs combination pdf computational graph (image courtesy of Nicolas Morange)

Parallelization strategy

7

Old & new parallelization implementation

[1] Bos, E. G. P., Burgard, C. D., Croft, V. A., Hageboeck, S., Moneta, L., Pelupessy, I., ... & Verkerke, W. (2020). Faster RooFitting: Automated parallel calculation of … (see last slide)

- Original RooFit implements simple parallel strategy (“NumCPU”)
- Split calculation of each likelihood call in N equal pieces
- Load balancing scales poorly for workspaces with many

component likelihoods of different sizes and types
(binned/unbinned)

- New initiative to parallelize RooFit started ± 7 years ago [1]
- Parallelize at level of gradient calculations, rather than

at level of likelihood evaluation
- New strategy improves load balancing and minimizes

communication overhead

- Also overhaul of both internal and user interface classes for
likelihood component calculations

- Back-end available from ROOT 6.26, in public interfaces since
6.28

Example Higgs combination fit result, these fits currently easily
require many hours to complete

• The principle behind most minimization routines consists of

until some stopping condition is satisfied

• For Minuit2, the minimization routine that RooFit uses, the following
holds

• p is the step direction, determined by the variable metric
method, the most expensive part of which is the calculation of
the gradient (O(N) likelihood evals)

• 𝜆 is the step size in the given direction, determined by a line
search step, the most expensive part of which is the evaluation
of the full likelihood (O(3) likelihood evals)

A Brief Reminder on Likelihood Minimisation

G
ra

di
en

t
G
ra

di
en

t
G
ra

di
en

t

lsearch

lsearch

Execution time for
partial derivatives
may vary strongly

Pa
rt
ia
l

de
riv

at
iv
e

Pa
rt
ia
l

de
riv

at
iv
e

9

Gradient Parallelisation
G
ra

di
en

t
G
ra

di
en

t
G
ra

di
en

t

lsearch

lsearch

• RooFit::TestStatistics splits the gradient
into individual partial derivative tasks

• The task (partial derivatives) sizes may vary
strongly due to
• Most components only being dependent on

subset of parameters, thus not all components
need evaluation for every partial derivative

• Varying likelihood component calculation
complexity

• Dynamic load balancing is crucial and is currently
addressed by
• "Work stealing" algorithm
• Task ordering by duration

not actually equal in size!

RooFit::MultiProcess + ::TestStatistics

• Back-end implementation choices (hidden for most users):
• MultiProcess: parallel processes, not threads

• Bypasses thread safety concerns
• Requires communication (ZeroMQ) à overhead à best for large parallel tasks
• In theory allows extension towards multiple machines (not currently planned)

• TestStatistics: new classes for likelihoods, separate statistics
concepts from computational details

• Refactoring of the RooNLLVar – RooAbsOptTestStatistic – RooAbsTestStatistic tree
• Ease maintenance and extensibility

• Functional, open for testing and feedback
• Consolidation with old RooNLLVar infra to be planned

Benchmarks

• Used recent Higgs combination workspace produced for 10 year Higgs anniversary paper [2]
• The line search parallelization is still in testing, gradient can be used out of the box since ROOT 6.28
• For the line search timings 𝐻 → 𝛾𝛾was removed from the combination workspace

Scaling of Line Search and Gradient

[2] The ATLAS Collaboration. A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery. Nature 607, 52–59 (2022). https://doi.org/10.1038/s41586-022-04893-w

• With gradient parallelization the achieved speedup with 16
workers is 4.6, including all serial components
• Walltime down from 2h12m to 29m
• At that point, nearly half of the walltime is spent in serial

parts

• With line search parallelization fully integrated we can
reasonably expect to reach a total speedup of 5.3
• Would bring walltime down to 25 minutes

Full Higgs Combination Fit Scaling (2022)

• The ordering of parallel tasks can significantly impact the total runtime of a parallel program
• Suboptimal ordering in cases where task duration varies strongly can cause processes to idle

• RooFit::MultiProcessing implements custom task ordering
• Can be dynamically updated with timing information as the variable metric steps progress
• Reduces gradient calculation time by more than 5% for 10 workers “for free”

14

Optional: Task Ordering Optimisation

When ending with the
smallest jobs workers do not
have to wait for each other

• The ordering of parallel tasks can significantly impact the total runtime of a parallel program
• Suboptimal ordering in cases where task duration varies strongly can cause processes to idle

• RooFit::MultiProcessing implements custom task ordering
• Can be dynamically updated with timing information as the variable metric steps progress
• Reduces gradient calculation time by more than 5% for 10 workers “for free”

15

Optional: Task Ordering Optimisation

But what if this task
were here instead?

Demo time!
… hope your ROOT compilation completed yet

Try it out!
https://gist.github.com/egpbos/03003b273b8bb2407aa64a575a99a25b
(or go to https://gist.github.com/egpbos, the top one)

Requirements:
• ROOT 6.28+ built with

 -Droofit_multiprocess=ON
• … that’s it!

Try it out!

Specify number of workers to use

https://gist.github.com/egpbos/03003b273b8bb2407aa64a575a99a25b
(or go to https://gist.github.com/egpbos, the top one)

Try it out!

Specify number of workers to use

Create or import a workspace
(try your own!)

https://gist.github.com/egpbos/03003b273b8bb2407aa64a575a99a25b
(or go to https://gist.github.com/egpbos, the top one)

Try it out!

Specify number of workers to use

Create or import a workspace

Build a likelihood with option
RooFit::ModularL(true)
(instantiates a RooRealL).

https://gist.github.com/egpbos/03003b273b8bb2407aa64a575a99a25b
(or go to https://gist.github.com/egpbos, the top one)

Try it out!

Specify number of workers to use

Create or import a workspace

Create the minimizer, using the
Config object (has more options)

Build a likelihood with option
RooFit::ModularL(true)
(instantiates a RooRealL).

https://gist.github.com/egpbos/03003b273b8bb2407aa64a575a99a25b
(or go to https://gist.github.com/egpbos, the top one)

Try it out!

Specify number of workers to use

Create or import a workspace

Minimize!

Build a likelihood with option
RooFit::ModularL(true)
(instantiates a RooRealL).

Create the minimizer, using the
Config object (has more options)

https://gist.github.com/egpbos/03003b273b8bb2407aa64a575a99a25b
(or go to https://gist.github.com/egpbos, the top one)

Try it out!

Specify number of workers to use

Create or import a workspace

Minimize!

Build a likelihood with option
RooFit::ModularL(true)
(instantiates a RooRealL).

Create the minimizer, using the
Config object (has more options)

https://gist.github.com/egpbos/03003b273b8bb2407aa64a575a99a25b
(or go to https://gist.github.com/egpbos, the top one)

(on ROOT 6.28+ built with -Droofit_multiprocess=ON)

Conclusions
Conclusions

Conclusions

• A new parallel implementation of RooFit was developed that parallelizes at the level of
gradient calculations and optionally over events or components during line search
• Scales well through dynamic load-balancing

• RooFit speed improvements in multiple directions
• Automatic differentiation
• New computation back-ends: CPU vectorization, GPU
• Multiprocessing

• Consolidation of these efforts is an important next step on the agenda
• For example, multiprocessing and vectorized computations optimize at a different level

and could be used simultaneously

Bonus: caching ftw

From ACAT 2019 talk

Try it out!

And grab/call me
if it doesn’t work

Thank you for
your attention!

https://gist.github.com/egpbos/03003b
273b8bb2407aa64a575a99a25b

p.bos@esciencecenter.nl

+31 6 10795874

Moar cool stuff!
Likelihood fit benchmarking tools by Zef Wolffs

29

Gradient Parallelisation - Benchmarking

• Not all parameters present in all likelihood
components
• If this is the case, no evaluation is

necessary and the result is returned
immediately

• Explains the black regions in heatmap

• Benchmarking tools now available in RooFit
• TimingAnalysis argument in

RooMinimizer enables profiling
• RooFit::MultiProcess::HeatmapAna

lyzer() to create a heatmap

Pa
ra

lle
l t

as
k

Likelihood component

30

Gradient Parallelisation - Benchmarking

• Not all parameters present in all likelihood
components
• If this is the case, no evaluation is

necessary and the result is returned
immediately

• Explains the black regions in heatmap

• Benchmarking tools now available in RooFit
• TimingAnalysis argument in

RooMinimizer enables profiling
• RooFit::MultiProcess::HeatmapAna

lyzer() to create a heatmap

these parameters
appear only in

a single component!Pa
ra

lle
l t

as
k

Likelihood component

31

Future Work - Job Scheduling

● This heatmap contains the time expenditures for a
Higgs combination workspace, the histogram next
to it displays the time expenditure per partial
derivative

● Note that each partial derivative constitutes a job,
i.e. a task to be executed by a worker. In this case,
there is a large difference in time needed per task

● Current job scheduling strategy lets workers pick
jobs from queue, currently the queue is ordered
with the same order as the heatmap

32

Future Work - Job Scheduling

● Running a simple simulation shows that times can vary based on ordering of jobs, this effect
scales directly with the differences in job sizes
○ These simulations were run with real time expenditures from previous slide and assuming

no communication overhead

6.6 min. per gradient 6.5 min. per gradient 5.5 min. per gradient

33

Future Work - Job Scheduling

● If communication overhead is dominating, we want to limit the number of times that workers
communicate. This can be achieved by sending packages of partial derivatives per job
simultaneously to workers.
○ Reduces the number of times communication is done, but increases the time spent per job

● Below plots show the simulated time expenditures per gradient as a function of package size
(number of partial derivatives per job) and communication overhead

4 workers 8 workers 16 workers 32 workers

Moar details!
the Nitty Gritty™

35

Likelihood Parallelisation

• In some cases, evaluation of the likelihood can be the bottleneck, for example in the calculation of the
line search step
• During the line search step all parameters are typically changed two or three times, requiring an

evaluation of all components of the likelihood
• With the gradient sufficiently optimised, this can become the bottleneck for an entire fit

• RooFit::TestStatistics has two options for splitting likelihood evaluation into tasks
• By events: each task is defined by an event range to execute
• By components: each task is defined by a set of components to execute

Background - Line Search

● The idea is to find an optimal step size λ, given a calculated step direction p, that minimizes f(x),
i.e.
○ This is essentially another single-dimensional minimization problem, which could be solved

again by something like gradient descent
○ Line search in MIGRAD is “inexact”, this means that rather than finding the exact minimum

of f(x) along the line spanned by λp, a sufficient decrease in f(x) is found
■ This is because finding the exact minimum might cost a lot of minimization steps,

and finding a new step direction may then be preferable
■ Instead of finding global minimum, minimize until conditions are satisfied (e.g. Wolfe

conditions)

RooFit::MultiProcess
Implementation details

A General Parallel RooFit Framework
• A general parallel framework RooFit::MultiProcess was written to serve as a

foundation for any RooFit parallelisation efforts
• Uses ZeroMQ for inter-process communication
• Interfaces with rest of RooFit through RooFit::MultiProcess::Job

38

RooFit::MultiProcess knows how to
interact with “Job” base classes

The rest of RooFit knows how
to interact with likelihoods,

gradients, etc…

Classes that inherit from MultiProcess::Job
thus interface multiprocessing code with

the rest of RooFit

39

A General Parallel RooFit Framework

• The UML sequence diagram
included on the right displays a
simplified version of the
RooFit::MultiProcessing

execution flow

• Much more detailed UML diagrams
of RooFit::MultiProcessing
can be found in previous CHEP
proceedings [1]

[1] Bos, EG Patrick, et al. "Faster RooFitting: Automated parallel calculation of collaborative statistical models." Journal of Physics: Conference Series. Vol. 1525. No. 1. IOP Publishing, 2020.

40

A General Parallel RooFit Framework

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

41

A General Parallel RooFit Framework

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

42

A General Parallel RooFit Framework

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

Master submits parallel
tasks to queue

43

A General Parallel RooFit Framework

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

Master submits parallel
tasks to queue

Workers request tasks
from queue in loop

44

A General Parallel RooFit Framework

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

Master submits parallel
tasks to queue

Workers request tasks
from queue in loop

Queue assigns task with
highest priority if available

45

A General Parallel RooFit Framework

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

Master submits parallel
tasks to queue

Workers request tasks
from queue in loop

Workers execute assigned
task and send result to

master

Queue assigns task with
highest priority if available

46

A General Parallel RooFit Framework

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

Master submits parallel
tasks to queue

Workers request tasks
from queue in loop

Workers execute assigned
task and send result to

master

Queue assigns task with
highest priority if available

The master process has
received all tasks and

evaluation is done, rest of
RooFit proceeds as usual

