
New Developments in Minuit2
L. Moneta, J. Rembser O. Zapata

Introduction
▶ Minuit

● Popular minimisation program developed in the 1970s by F. James.
● It is a variable-metric method (quasi-Newton method) based on the DFP /

BFGS update of the inverse Hessian matrix.
● Works extremely well for fitting (e.g. parameter estimation) and it is has been

used extensively in HEP.
● Available in ROOT since the beginning in the TMinuit class.

▶ Minuit2
● Improved version re-written in C++ classes of same algorithm (MIGRAD)
● Available both in ROOT and as a standalone version
● Being used in the statistical analysis of LHC experiments
● Default minimizer in ROOT since latest release, 6.32
● iMinuit : python package built on top of Minuit2

■ used in large astroparticle physics experiments
2

Characteristics of Minuit
▶ Works very well, superior to gradient descent methods

● Much less number of iterations to converge
● No need to perform matrix inversion at each iteration
● Approximate Hessian converges to true Hessian at the minimum
● Regularisation when Hessian is not positive defined

■ add offset to the diagonal of H to make it positively defined
● Self-correcting if the Hessian approximation is not good enough

▶ Disadvantages:
● Sensitive to initial parameters, it is a local minimiser and can get stuck in local

minima
● Sensitive to bad numerical precision in function and gradient calculation
● Does not scale to problems with a huge number of parameters

■ proven to work to > ~ 1000 parameters (e.g Higgs combination fits)
■ will not work for training deep-learning models with millions of parameters

◆ need to use gradient descent in these cases
3

External Gradient and Hessian

▶ Minuit requires the function gradient at each iteration
● computed by default numerically using a 3 points rule and adaptive step

sizes
■ well-tested and robust method
■ essential to having good precision when the gradient is close to zero (near

the minimum) to converge rapidly

▶ Support for external gradients provided by user
● needed for users exploiting Automatic Differentiation (AD)

▶ New: Option in Minuit2 to provide external Hessian or only the
diagonal of the Hessian (G2) for seeding
● without providing Hessian, Minuit2 computes G2 numerically
● using initial user steps is often not good (need good estimates)

4

New improvements in Minuit2

▶ Improved debugging
● can log and return to user all minimisation iteration states
● can provide a detailed output of each iteration (in debug mode)

▶ Possibility to add users callback functions at each iteration
▶ Thread-safety: Minuit2 can work in multi-threads if user

provided function can
● support for likelihood or gradient parallelisation

▶ Addition of new minimization methods:
● BFGS: use only standard BFGS formula instead of the default mode

of using both BFGS or DFP formula depending on some conditions
5

New Strategy 3

▶ Added a new strategy (strategy=3) thanks to Will B.
● Similar behaviour as strategy 1 and 2, but with improved

Hessian computation
■ use diagonal Hessian for seeding as in strategy 1
■ use same number of cycles (iterations) as in strategy 2

● Compute off-diagonal Hessian elements using central
derivatives (5-point rule: 3 extra function evaluation)

▶ This gives improved precision in Hessian in case of fits with
large statistics
● Avoid the problem of having a non-positive defined Hessian

after the minimization
6

Specialized Algorithms for Fitting

▶ When minimising Least-square functions:

▶ Many algorithms have been developed on this approximation:
▶ e.g. Levenberg-Marquardt (GSL), Fumili, …

F(x) =
n

∑
k=1

f 2
k =

n

∑
k=1 (yk − Tk(x)

σk)
2

Hij =
∂2F(x)
∂xi∂xj

=
n

∑
k=1

2
∂fk∂fk
∂xi∂xj

+ 2fk
∂2fk

∂xi∂xj
≈

n

∑
k=1

2
∂fk∂fk
∂xi∂xj

H ≈ JTJ

7

this can be neglected
when residuals f are
small

Neglect second
derivatives of model
function: linearisation

Hessian

Likelihood Fits
▶ For likelihood functions:

 and

▶ the linear approximation is not always valid!

▶ For binned likelihood fits, can write the likelihood as

 and after removing constant terms

  

▶ The same algorithms used for least-square fitting can be used !

ℒ(x) = −
n

∑
k=1

log f (yk |x) Hij =
∂2ℒ(θ)
∂θi∂θj

= −
n

∑
k=1

∂
∂xi (1

fk

∂fk
∂xj) =

n

∑
k=1

1
f 2

k

∂fk∂fk
∂xi∂xj

−
n

∑
k=1

1
fk

∂2 fk
∂xi∂xj

ℒ(x) = −
n

∑
k=1

log P(nk |μk(x)) = −
n

∑
k=1

log
e−μk(x)μk(x)nk

nk!

ℒ(x) =
n

∑
k=1

(μk(x) − nk log μk(x))

Hij =
∂2ℒ(θ)
∂θi∂θj

=
n

∑
k=1

∂
∂xi (∂μk

∂xj
−

nk

μk

∂μk

∂xj) =
n

∑
k=1

nk

μ2
k

∂μk∂μk

∂xi∂xj
−

n

∑
k=1

(nk − μk)
μk

∂2μk

∂xi∂xj
≈

n

∑
k=1

nk

μ2
k

∂μk∂μk

∂xi∂xj

H ≈ JT J

8

this can be neglected
it is like a residual fk

Specialized Fitting Methods
▶ Hessian can be computed directly from the first derivatives of the model function

● It is like a linear fit approximation
▶ This approximation is also good in the case of binned likelihood fits but not

always for standard unbinned maximum likelihood fits
▶ Advantage of linearisation:

● positive defined Hessian and easy to calculate gradients (one can use a 2-point
rule)

● faster to converge than standard methods (Minuit/BFGS)
▶ Disadvantage:

● Initial point need to be close enough to the minimum to consider the
approximation valid

● require a more complex interface, needed the Jacobian matrix (number of fit
points number of parameters) at each iteration

Hk ≈ JT
k Jk

×
9

New Fumili Algorithm

▶ New implementation of Fumili algorithm: Fumili2
● original algorithm from I. Silin implemented in the Cernlib and TFumili

class
▶ It is integrated into Minuit2 library

● re-using Minuit2 interfaces classes
● working for both least-square and binned likelihood fits

▶ Based on trust-region using  
dogleg step
● trust region can be scaled  

using a metric defined  
by the diagonal of the  
approximated Hessian

10

Benchmark Results

▶ Use a binned likelihood to fit
signal peak over some
background in a histogram
▶ 1000 bins
▶ 7 parameter fits performing

numerical convolution
▶ repeat fit 1000 times with

different data and different initial
random parameter values
✦ not too far from the minimum

11

0 0.5 1 1.5 2 2.5 3

1

10

210

310
Fumili2 CPU= 0.00589204 s � Nfail = 0

Fumili2 fit bench

Benchmark Results
▶ Binned likelihood fit to signal peak over some background

▶ New Fumili algorithm (Fumili2) works very well !
12

Benchmark Results (2)

▶ With initial parameters values further away from minimum

13

Using a starting point
further away we start to
see more fit failures !

0 0.5 1 1.5 2 2.5 3

1

10

210

310

Fumili2 CPU= 0.00641489 s � Nfail = 1

ROOT Minimization Interface

▶ ROOT provides class ROOT::Math::Minimizer as general interface
for minimization

▶ Current default is TMinuit (old Minuit implementation)
● plan to switch to use Minuit2 as default in the next release

▶ Implemented by several algorithms:
● TMinuit
● Minuit2
● TFumili
● GSL minimisers and fitters algorithms (Levenberg-Marquardt)
● Simulated annealing and Genetic algorithm
● R-Minimizer : minimiser based on algorithms from R
● and now from Python: scipy.optimize

14

Scipy optimizers

▶ New implementation of ROOT::Math::Minimizer using
scipy.optimize (from O. Zapata)

▶ scipy.optimize.minimize provides 
 several minimization algorithms

15

Benchmark with Scipy

16

▶ Varying performance of scipy minimisers
● Minuit2 performs better!

▶ Fitting using AD
● without providing gradients scipy optimisers perform worse

■ e.g. number of failures for TNC is more than 80%

Time for CG is > 600 ms

Conclusions

▶ Minuit is more than 50 years old but it seems to be still the best
minimization algorithm for HEP fitting problems

▶ New algorithm (Fumili2) for least-square and binned likelihood fit
▶ Recent improvements in Minuit2:

● support for external gradient and Hessian (for AD users)
● improve logging and usability
● new strategy 3 for fixing some issues with high statistics fits

▶ Minuit2 is now the default minimiser in the latest ROOT version (6.32)
▶ Future work:

● implement support for non-trivial parameter constraints

17

References

▶ Minuit2:
● Users guide
● Minuit Tutorial on Function Minimization (F. James)

▶ ROOT Minimisers
● ROOT::Math::Minimizer

▶ scipy:
● scipy.optimize.minimize documentation
● scipy ROOT interface

▶ iMinuit
● https://iminuit.readthedocs.io/en/stable/

18

https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html
http://seal.cern.ch/documents/minuit/mntutorial.pdf
https://root.cern.ch/doc/master/classROOT_1_1Math_1_1Minimizer.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
http://oproject.org/pages/Scipy.html
https://iminuit.readthedocs.io/en/stable/

Backup Slides

19

Minuit Algorithm
▶ Start with an initial approximation of inverse Hessian,

● e.g. use diagonal second derivatives
▶ Iterate :

● compute new step direction as where
● perform line search for optimal point

■
● compute the new gradient at and
● Update inverse Hessian matrix according to BFGS or DFP update formula

BFGS : DFP:

● stop iteration when the Expected Distance from the Minimum (EDM)  
 is small

▶ EDM provides a scale-invariant quantity to tell the convergence of method.
● This is unique in Minuit!

H = (∇2f (x))−1

pk = − Hg g = ∇f (xk)
xk+1 = xk + αpk

sk = xk+1 − xk
g xk+1 yk = gk+1 − gk

Hk

Hk+1 = (I −
skyT

k

yT
k sk

)Hk(I −
yksT

k

yT
k sk

) +
sksT

k

yT
k sk

Hk+1 = Hk +
sksT

k

sT
k yk

−
HkykyT

k Hk

yT
k Hkyk

ρ = gT Hg

20

Fumili Algorithm

▶ Old algorithm proposed already in 1961 by I. Silin
▶ Implemented later in the CERN library and made also available to

ROOT with TFumili class.
● It uses the Hessian approximation combined with a trust region

method.
■ a multidimensional parallelepiped ("box") is defined around the point

and used its intersection with the Newton direction for the next step
■ size of the parallelepiped changes dynamically

◆ depending on the function improvements and the expectation from a
quadratic approximation.

▶ Faster than Minuit for least-square fits when the starting point is
close enough to the solution

21

Benchmark Results

▶ Use a binned likelihood to fit signal peak over some background

22

Mean 0.01292

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01292

Minuit2 (time)
Mean 0.01342

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01342

Minuit (time)
Mean 0.01292

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01292

Minuit2_BFGS (time)
Mean 0.003225

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

310 Mean 0.003225

Fumili2 (time)
Mean 0.006277

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

310 Mean 0.006277

Fumili (time)

Mean 270.2

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 270.2

Minuit2 (# function calls)

Mean 279.5

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 279.5

Minuit (# function calls)

Mean 270.5

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 270.5

Minuit2_BFGS (# function calls)

Mean 9.552

0 100 200 300 400 500 600
nfcn

1

10

210

310
Mean 9.552

Fumili2 (# function calls)

Mean 44.95

0 100 200 300 400 500 600
nfcn

10

210

310
Mean 44.95

Fumili (# function calls)

Mean 1.009

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.009

Minuit2 (chi2/ndf)

Mean 1.009

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.009

Minuit (chi2/ndf)

Mean 1.01

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.01

Minuit2_BFGS (chi2/ndf)

Mean 1.004

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.004

Fumili2 (chi2/ndf)

Mean 1.005

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.005

Fumili (chi2/ndf)

1000 bins - 7 parameters
repeat fit 1000 times with
different data and different
initial parameter values

0 0.5 1 1.5 2 2.5 3

1

10

210

310
Fumili2 CPU= 0.00589204 s � Nfail = 0

Fumili2 fit bench

Benchmark Results (2)

▶ Using initial parameters values further away from minimum solution

23

Using a starting point
further away we start to
see more fit failures !

Mean 0.01493

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01493

Minuit2 (time)
Mean 0.01523

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01523

Minuit (time)
Mean 0.01654

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.01654

Minuit2 str1 (time)
Mean 0.02447

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.02447

Minuit2 str2 (time)
Mean 0.008537

0 0.01 0.02 0.03 0.04 0.05
sec

1

10

210

Mean 0.008537

Fumili2 (time)

Mean 306.1

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 306.1

Minuit2 (# function calls)

Mean 315.6

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 315.6

Minuit (# function calls)

Mean 342.8

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 342.8

Minuit2 str1 (# function calls)

Mean 474.5

0 100 200 300 400 500 600
nfcn

1

10

210

Mean 474.5

Minuit2 str2 (# function calls)

Mean 35.35

0 100 200 300 400 500 600
nfcn

210

Mean 35.35

Fumili2 (# function calls)

Mean 1.041

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.041

Minuit2 (chi2/ndf)

Mean 1.04

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.04

Minuit (chi2/ndf)

Mean 1.023

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.023

Minuit2 str1 (chi2/ndf)

Mean 1.111

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.111

Minuit2 str2 (chi2/ndf)

Mean 1.319

0.6 0.8 1 1.2 1.4 1.6 1.8 2
chi2/ndf

1

10

210

Mean 1.319

Fumili2 (chi2/ndf)

0 0.5 1 1.5 2 2.5 3

1

10

210

310

Fumili2 CPU= 0.00641489 s � Nfail = 1

Benchmark Results (2)

▶ Using initial parameters values further away from minimum solution

24

Using a starting point
further away we see also
longer fitting time

0 0.5 1 1.5 2 2.5 3

1

10

210

310

Fumili2 CPU= 0.017426 s � Nfail = 1

Benchmark using Scipy Minimisers

25Using Scipy Minimizer interface from O. Zapata

Poor performance
o f scipy w i th
respect to Minuit!

Mean 0.002235

0 0.01 0.02 0.03 0.04 0.05

sec

1

10

210

310 Mean 0.002235

Minuit2 (time)

Mean 0.009415

0 0.01 0.02 0.03 0.04 0.05

sec

1

10

210

Mean 0.009415

Scipy_BFGS (time)

Mean 0.005361

0 0.01 0.02 0.03 0.04 0.05

sec

1

10

210

Mean 0.005361

Scipy_TNC (time)

Mean 0.02479

0 0.01 0.02 0.03 0.04 0.05

sec

1

10

210

Mean 0.02479

Scipy_Nelder_Mead (time)

Mean 0.6233

0 0.2 0.4 0.6 0.8 1

sec

1

10

210 Mean 0.6233

Scipy_CG (time)

Mean 26.14

0 100 200 300 400 500

nfcn

1

10

210

310 Mean 26.14

Minuit2 (# function calls)

Mean 78.5

0 100 200 300 400 500

nfcn

1

10

210

Mean 78.5

Scipy_BFGS (# function calls)

Mean 43.64

0 100 200 300 400 500

nfcn

210

Mean 43.64

Scipy_TNC (# function calls)

Mean 717.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

nfcn

1

10

210

Mean 717.4

Scipy_Nelder_Mead (# function calls)

Mean 4496

0 1000 2000 3000 4000 5000

nfcn

1

10

210

310 Mean 4496

Scipy_CG (# function calls)

Mean 1.009

0.6 0.8 1 1.2 1.4 1.6 1.8 2

chi2/ndf

1

10

210

Mean 1.009

Minuit2 (chi2/ndf)

Mean 1.026

0.6 0.8 1 1.2 1.4 1.6 1.8 2

chi2/ndf

1

10

210

Mean 1.026

Scipy_BFGS (chi2/ndf)

Mean 1.008

0.6 0.8 1 1.2 1.4 1.6 1.8 2

chi2/ndf

1

10

210

Mean 1.008

Scipy_TNC (chi2/ndf)

Mean 1.008

0.6 0.8 1 1.2 1.4 1.6 1.8 2

chi2/ndf

1

10

210

Mean 1.008

Scipy_Nelder_Mead (chi2/ndf)

Mean 1.035

0.6 0.8 1 1.2 1.4 1.6 1.8 2

chi2/ndf

1

10

210

Mean 1.035

Scipy_CG (chi2/ndf)

Scipy using Numerical Derivatives
▶ Fitting time and failures in Scipy with numerical gradients

26

