ROOT

Data Analysis Framework

New Developments in Minuit2

L. Moneta,]. Rembser O. Zapata

Introduction

» Minuit
e Popular minimisation program developed in the 1970s by F. James.
e Itis a variable-metric method (quasi-Newton method) based on the DFP /
BFGS update of the inverse Hessian matrix.
e Works extremely well for fitting (e.g. parameter estimation) and it is has been
used extensively in HEP.
e Available in ROOT since the beginning in the TMinuit class.

» Minuit2
e Improved version re-written in C++ classes of same algorithm (MIGRAD)
Available both in ROOT and as a standalone version
Being used in the statistical analysis of LHC experiments
Default minimizer in ROOT since latest release, 6.32
iMinuit : python package built on top of Minuit2
B used in large astroparticle physics experiments

Characteristics of Minuit

» Works very well, superior to gradient descent methods
e Much less number of iterations to converge
e No need to perform matrix inversion at each iteration
e Approximate Hessian converges to true Hessian at the minimum
([

Regularisation when Hessian is not positive defined
B add offset to the diagonal of H to make it positively defined

e Self-correcting if the Hessian approximation is not good enough

» Disadvantages:
e Sensitive to initial parameters, it is a local minimiser and can get stuck in local
minima
e Sensitive to bad numerical precision in function and gradient calculation
e Does not scale to problems with a huge number of parameters
® proven to work to > ~ 1000 parameters (e.g Higgs combination fits)

® will not work for training deep-learning models with millions of parameters
+ need to use gradient descent in these cases

External Gradient and Hessian

» Minuit requires the function gradient at each iteration
e computed by default numerically using a 3 points rule and adaptive step
sizes
m well-tested and robust method
B essential to having good precision when the gradient is close to zero (near
the minimum) to converge rapidly

» Support for external gradients provided by user
e needed for users exploiting Automatic Differentiation (AD)

» New: Option in Minuit2 to provide external Hessian or only the

diagonal of the Hessian (G2) for seeding
e without providing Hessian, Minuit2 computes G2 numerically
e using initial user steps is often not good (need good estimates)

New improvements in Minuit2

» Improved debugging
e can log and return to user all minimisation iteration states
e can provide a detailed output of each iteration (in debug mode)

» Possibility to add users callback functions at each iteration

» Thread-safety: Minuit2 can work in multi-threads if user

provided function can
e support for likelihood or gradient parallelisation

» Addition of new minimization methods:

e BFGS: use only standard BFGS formula instead of the default mode
of using both BFGS or DFP formula depending on some conditions

New Strategy 3

» Added a new strategy (strategy=3) thanks to Will B.
e Similar behaviour as strategy 1 and 2, but with improved

Hessian computation
B use diagonal Hessian for seeding as in strategy 1
B use same number of cycles (iterations) as in strategy 2

e Compute off-diagonal Hessian elements using central
derivatives (5-point rule: 3 extra function evaluation)

» This gives improved precision in Hessian in case of fits with
large statistics
e Avoid the problem of having a non-positive defined Hessian
after the minimization

Specialized Algorithms for

Fitting

» When minimising Least-square functions:

2
Fo =Y =Y <yk _(,Tk(x)>
k

k=1 k=1

0°F(x) Z afkaj; a% N Z zaﬁaﬁ

Hessian H; =

0x;0%; 0x; dx 6x ox; P 0x;0X;
H ~ J TJ this can be neglected Neglect second
when residuals f are derivatives of model
small function: linearisation

» Many algorithms have been developed on this approximation:

» e.g. Levenberg-Marquardt (GSL), Fumili, ...

Likelihood Fits

» For likelihood functions:

- 0*Z(9) o 0 [1 0f 1 o919, L1 0%
L) == Y logf(ylx) and H = =~ 25\ 7oy D
= 00,00; ax, fk 0x; = Ji 0x;0x; = Ji 0x;0x;

P the linear approximation is not always valid!

» For binned likelihood fits, can write the likelihood as
c c e MWy (x)™
ZL(x)=— Z log P(n; | i (x)) = — Z log — and after removing constant terms
_ Ny

n

L) =) () = log p(x))

k=1
o PLO) _ ii O O\ _ z”‘:@%aﬂk - Z (e —m) % Z@ Opix Ot

Y ()91(36] P axi 6x] My ax] k=1 //l]% axiax]' k=1 Hi ()xl-axj k=1 //l% ()xiaxj
H~ JTJ this can be neglected

it is like a residual f,

» The same algorithms used for least-square fitting can be used !

Specialized Fitting Methods

» Hessian can be computed directly from the first derivatives of the model function
e ltis like a linear fit approximation

P This approximation is also good in the case of binned likelihood fits but not
always for standard unbinned maximum likelihood fits

» Advantage of linearisation:
e positive defined Hessian and easy to calculate gradients (one can use a 2-point
rule)
e faster to converge than standard methods (Minuit/BFGS)

» Disadvantage:
e Initial point need to be close enough to the minimum to consider the
approximation H, ~ J/ J, valid
e require a more complex interface, needed the Jacobian matrix (number of fit
points X number of parameters) at each iteration

New Fumili Algorithm

» New implementation of Fumili algorithm: Fumili2
e original algorithm from I. Silin implemented in the Cernlib and TFumili
class

» It is integrated into Minuit2 library
e re-using Minuit2 interfaces classes
e working for both least-square and binned likelihood fits

» Based on trust-region using
dogleg step
e trust region can be scaled
using a metric defined
by the diagonal of the
approximated Hessian

Gauss—Newton step

Steepest descent direction

10

Benchmark Results

Fumili2 fit bench

» Use a binned likelihood to fit
signal peak over some
background in a histogram OO e i

» 1000 bins

» 7 parameter fits performing
numerical convolution

P repeat fit 1000 times with
different data and different initial
random parameter values

4 not too far from the minimum

11

Benchmark Results

P Binned likelihood fit to signal peak over some background

Fitting time by minimizers (Close) Fit failures by minimizers (Close)
Minimizer Minimizer
I Minuit 7 I Minuit
20 4 EEE Minuit2 EE Minuit2
BFGS BFGS
B stra=1 _ 61 B stra=1
_ mm stra=2 R mm stra=2
g Fumili § 51 Fumili
° m Fumili2 3 E Fumili2
€ i
=] w4
o (o]
c —
— (]
= o
'E S 31
>
=
2 <
1 <
0- T T
Minuit Minuit2 BFGS stra=1 stra=2 Fumili Fumili2 Minuit Minuit2 BFGS stra=1 stra=2 Fumili Fumili2

» New Fumili algorithm (Fumili2) works very well !
12

Benchmark Results (2)

» With initial parameters values further away from minimum

Fit failures by minimizers (Far)

‘%Mb\/c\ Minimizer
10° ¥ 5o - . Minuit
o B Minuit2
RN BFGS
10 ¥ — 40 - B stra=1
i ‘ S e stra=2
1oL e o Fumili
1 3 m Fumili2
I é 30 A
| €20
2
Using a starting point o
further away we start to
see more fit failures ! o

Minuit Minuit2 BFGS stra=1 stra=2 Fumili Fumili2 13

ROOT Minimization Interface

» ROOT provides class ROOT: :Math: :Minimizer as general interface
for minimization

» Current default is TMinuit (old Minuit implementation)

plan to switch to use Minuit2 as default in the next release

» Implemented by several algorithms:

TMinuit

Minuit2

TFumili

GSL minimisers and fitters algorithms (Levenberg-Marquardt)
Simulated annealing and Genetic algorithm

R-Minimizer : minimiser based on algorithms from R

and now from Python: scipy.optimize

14

Scipy optimizers

» New implementation of ROOT::Math::Minimizer using
scipy.optimize (from O. Zapata)

» scipy.optimize.minimize provides
several minimization algorithms

method : str or callable, optional
Type of solver. Should be one of
¢ ‘Nelder-Mead' (see here)
e 'Powell’ (see here)
e 'CG' (see here)
e 'BFGS’' (see here)

scipy.optimize.minimize + Newton-CG (see here)
e 'L-BFGS-B' (see here)
scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, * 'TNC' (see here)

e 'COBYLA' (see here)
e 'SLSQP’' (see here)
e ‘trust-constr’(see here)

hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

e ‘dogleg’ (see here)

e ‘trust-ncg’ (see here)

e ‘trust-exact’ (see here)
e ‘trust-krylov’ (see here)

Benchmark with Scipy

Fitting time for scipy minimizers Fit failures by scipy minimizers
Minimizer Minimizer
30{ mEE Minuit2 16 1 m Minuit2
E BFGS B BFGS
TNC 14 1 TNC
251 mmm Powell B Powell
_ B Trust-Constr R 124 B Trust-Constr
g 50| ™ Nelder-Mead & CG
° 35 104 Em Nelder-Mead
£ K
) '45 |
2157 5
:‘é Qo
i E 6
10 A z
4 -
5 - 5]
0 - 0 T T T T
Minuit2 BFGS TNC Powell Trust- Nelder- Minuit2 BFGS TNC Powell Trust- CG Nelder-
Constr Mead Constr Mead
» Varying performance of scipy minimisers Time for CG is > 600 ms

e Minuit2 performs better!
» Fitting using AD
e without providing gradients scipy optimisers perform worse
B e.g. number of failures for TNC is more than 80% 16

Conclusions

» Minuit is more than 50 years old but it seems to be still the best
minimization algorithm for HEP fitting problems

» New algorithm (Fumili2) for least-square and binned likelihood fit

» Recent improvements in Minuit2:
e support for external gradient and Hessian (for AD users)
e improve logging and usability
e new strategy 3 for fixing some issues with high statistics fits

» Minuit2 is now the default minimiser in the latest ROOT version (6.32)

» Future work:
e implement support for non-trivial parameter constraints

17

References

» Minuit2:
e Users guide
e Minuit Tutorial on Function Minimization (F. James)

» ROOT Minimisers
e ROOQOT::Math::Minimizer

» scipy:
e scipy.optimize.minimize documentation
e scipy ROOT interface

» iMinuit
e https://iminuit.readthedocs.io/en/stable/

18

https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html
http://seal.cern.ch/documents/minuit/mntutorial.pdf
https://root.cern.ch/doc/master/classROOT_1_1Math_1_1Minimizer.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
http://oproject.org/pages/Scipy.html
https://iminuit.readthedocs.io/en/stable/

Backup Slides

Minuit Algorithm

» Start with an initial approximation of inverse Hessian, H = (V2f(x))~!
e e.g. use diagonal second derivatives

» lterate :
e compute new step direction as p, = — Hg where g = Vf(x;)
e perform line search for optimal point x; | = X, + ap;
S = M1 T Xk
e compute the new gradient g atx;,,;andy, = g1 — &
Update inverse Hessian matrix H, according to BFGS or DFP update formula
T T T T T
Ny S 5.8 5.8 H H
BFGS : H,,, = (I — 22 H,(1 - 2%) + 2% pepo g, = H + 2ok TRk T
I's Is Is st 'H,
Vi Sk Vi Sk Vi Sk k Yk Yie Yk

e stop iteration when the Expected Distance from the Minimum (EDM)
p =g Hg issmall

» EDM provides a scale-invariant quantity to tell the convergence of method.
e This is unique in Minuit!

20

Fumili Algorithm

» Old algorithm proposed already in 1961 by I. Silin

» Implemented later in the CERN library and made also available to
ROQOT with TFumili class.
e |t uses the Hessian approximation combined with a trust region

method.
B a multidimensional parallelepiped ("box") is defined around the point
and used its intersection with the Newton direction for the next step

B size of the parallelepiped changes dynamically
+ depending on the function improvements and the expectation from a
quadratic approximation.

» Faster than Minuit for least-square fits when the starting point is
close enough to the solution

21

Benchmark Results

» Use a binned likelihood to fit signal peak over some background

Minuit2 (time) Minuit (time) Minuit2_BFGS (time) Fumili2 (time) Fumili (time)
Fumili2 fit bench [Mean 0007 [(Wear _ voma) [(Wear 001207 10 [Wean 0005225) 10F M D005
10k 0
10
N AL
Nl " ‘ Fumili2 CPU=0.00589204 s Nfail =0 1op i 3
10° | o
e
e,
:
Minuit2 (# function calls) Minuit (# function calls) Minuit2_BFGS (# function calls) Fumili2 (# function calls) Fumili (# function calls)
T 70z T 775 o ean T57) wE e =)
10 3
10°
10°f
1
0 0.5 1 1.5 25 3 IS L
Minuit2 (chi2/ndf) Minuit (chi2/ndf) Minuit2_BFGS (chi2/ndf) Fumili2 (chi2/ndf) Fumili (chi2/ndf)
Tiean Tow] Tioan 7o) Tioan 7o) Tean Toor) Tean To5])
.
1000 bins - 7 parameters
diffi t dat d diff t
initial parameter values
initi valu L 1 L L
P " " 2
Chigingt chizingt chizindt ° T et " Chizindt

Benchmark Results (2)

» Using initial parameters values further away from minimum solution

Minuit2 (time) Minuit (time) Minuit2 str1 (time) Minuit2 str2 (time) Fumili2 (time)
Tean. 0.00447
10
10 10°
10° A\ 10 op 10)
"'\
iy
S,
|
10? " 601002 603 004 605
TR T
I Minuit2 str1 (# function calls) Minuit2 str2 (# function calls) Fumili2 (# function calls)
[Fumili2 CPU=0.00641489 s Nfail =1 Tiean 375 Tiean pizEa | Tioan o |
10 wh
‘i\ wk
10°]
1
l
Minuit2 (chi2/ndf) Minuit (chi2/ndf) Minuit2 str1 (chi2/ndf) Minuit2 str2 (chi2/ndf) Fumili2 (chi2/ndf)
Using a starting point = = =S =S =
further away we startto ¢
see more fit failures !
| : I 3

chizindt chizind! chiindt chizindt chizindt

Benchmark Results (2)

» Using initial parameters values further away from minimum solution

Fitting time by minimizers (Far)
S S -
X \ 25 Minimizer
10 N m Minuit
> . Minuit2
BFGS
102 20 1 B stra=1
. B stra=2
mi Nfail 0 Fumili
10 E "
o B Fumili2
£
o
1 £
0 0.5 1 1.5‘ ‘ 2 25 3 E
Using a starting point
further away we see also
longer fitting time

Minuit Minuit2 BFGS stra=1 stra=2 Fumili Fumili2

24

Minuit2 (time)

Mean 0002235

Minuit2 (# function calls)

Mean 2614

Minuit2 (chi2/ndf)

Mean 1009

Scipy_BFGS (time)

Scipy_TNC (time)

Scipy_Nelder_Mead (time)

Scipy_CG (time)

Mean _0009415] Mean — oo02479]
ok
107)
3
10
1| i3
60z 003
Scipy_BFGS (# function calls) Scipy_TNC (# function calls) Scipy_Nelder_Mead (# function calls) Scipy_CG (# function calls)
Mean 785] Mean 43564 Mean 717.4] . [Mean 1296
10 .
3
10 3 10k
| i+
L 200500 1000
Scipy_BFGS (chi2/ndf) Scipy_TNC (chi2/ndf) Scipy_Nelder_Mead (chi2/ndf)
Mean 1.026 Mean Mean 1.008
w0 w0l ok
of 1ok 1o
£ I3 £
MUY FOTT ST dd et FOUSTY T M —
iy ik i P ri—r—rt Tk

Poor performance

of scipy with
respect to Minuit!

Using Scipy Minimizer interface from O. Zapata

25

» Fitting time and failures in Scipy with numerical gradients

Fitting time for scipy minimizers

Fitting time (ms)

Minimizer

B Minuit2
| - BFGS

TNC

HE Powell
B Trust-Constr
| I Nelder-Mead

Minuit2

Scipy using Numerical Derivatives

Fit failures by scipy minimizers

[e)]
o
I

N
o
1

Number of failures (%)

N
o
1

Minimizer
Minuit2
BFGS
TNC
Powell
Trust-Constr
CG
Nelder-Mead

Minuit2 BFGS

T

CG Nelder-
Mead

26

