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Introduction

» Minuit
e Popular minimisation program developed in the 1970s by F. James.
e Itis a variable-metric method (quasi-Newton method) based on the DFP /
BFGS update of the inverse Hessian matrix.
e Works extremely well for fitting (e.g. parameter estimation) and it is has been
used extensively in HEP.
e Available in ROOT since the beginning in the TMinuit class.

» Minuit2
e Improved version re-written in C++ classes of same algorithm (MIGRAD)
Available both in ROOT and as a standalone version
Being used in the statistical analysis of LHC experiments
Default minimizer in ROOT since latest release, 6.32
iMinuit : python package built on top of Minuit2
B used in large astroparticle physics experiments



Characteristics of Minuit

» Works very well, superior to gradient descent methods
e Much less number of iterations to converge
e No need to perform matrix inversion at each iteration
e Approximate Hessian converges to true Hessian at the minimum
([

Regularisation when Hessian is not positive defined
B add offset to the diagonal of H to make it positively defined

e Self-correcting if the Hessian approximation is not good enough

» Disadvantages:
e Sensitive to initial parameters, it is a local minimiser and can get stuck in local
minima
e Sensitive to bad numerical precision in function and gradient calculation
e Does not scale to problems with a huge number of parameters
® proven to work to > ~ 1000 parameters (e.g Higgs combination fits)

®  will not work for training deep-learning models with millions of parameters
+ need to use gradient descent in these cases



External Gradient and Hessian

» Minuit requires the function gradient at each iteration
e computed by default numerically using a 3 points rule and adaptive step
sizes
m  well-tested and robust method
B essential to having good precision when the gradient is close to zero (near
the minimum) to converge rapidly

» Support for external gradients provided by user
e needed for users exploiting Automatic Differentiation (AD)

» New: Option in Minuit2 to provide external Hessian or only the

diagonal of the Hessian (G2) for seeding
e without providing Hessian, Minuit2 computes G2 numerically
e using initial user steps is often not good (need good estimates)



New improvements in Minuit2

» Improved debugging
e can log and return to user all minimisation iteration states
e can provide a detailed output of each iteration (in debug mode)

» Possibility to add users callback functions at each iteration

» Thread-safety: Minuit2 can work in multi-threads if user

provided function can
e support for likelihood or gradient parallelisation

» Addition of new minimization methods:

e BFGS: use only standard BFGS formula instead of the default mode
of using both BFGS or DFP formula depending on some conditions



New Strategy 3

» Added a new strategy (strategy=3) thanks to Will B.
e Similar behaviour as strategy 1 and 2, but with improved

Hessian computation
B use diagonal Hessian for seeding as in strategy 1
B use same number of cycles (iterations) as in strategy 2

e Compute off-diagonal Hessian elements using central
derivatives (5-point rule: 3 extra function evaluation)

» This gives improved precision in Hessian in case of fits with
large statistics
e Avoid the problem of having a non-positive defined Hessian
after the minimization



Specialized Algorithms for

Fitting

» When minimising Least-square functions:

2
Fo =Y =Y <yk _(,Tk(x)>
k

k=1 k=1

0°F(x) Z afkaj; a% N Z zaﬁaﬁ

Hessian H; =

0x;0%; 0x; dx 6x ox; P 0x;0X;
H ~ J TJ this can be neglected Neglect second
when residuals f are derivatives of model
small function: linearisation

» Many algorithms have been developed on this approximation:

» e.g. Levenberg-Marquardt (GSL), Fumili, ...



Likelihood Fits

» For likelihood functions:
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P the linear approximation is not always valid!

» For binned likelihood fits, can write the likelihood as
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» The same algorithms used for least-square fitting can be used !



Specialized Fitting Methods

» Hessian can be computed directly from the first derivatives of the model function
e ltis like a linear fit approximation

P This approximation is also good in the case of binned likelihood fits but not
always for standard unbinned maximum likelihood fits

» Advantage of linearisation:
e positive defined Hessian and easy to calculate gradients (one can use a 2-point
rule)
e faster to converge than standard methods (Minuit/BFGS)

» Disadvantage:
e Initial point need to be close enough to the minimum to consider the
approximation H, ~ J/ J, valid
e require a more complex interface, needed the Jacobian matrix (number of fit
points X number of parameters) at each iteration



New Fumili Algorithm

» New implementation of Fumili algorithm: Fumili2
e original algorithm from I. Silin implemented in the Cernlib and TFumili
class

» It is integrated into Minuit2 library
e re-using Minuit2 interfaces classes
e working for both least-square and binned likelihood fits

» Based on trust-region using
dogleg step
e trust region can be scaled
using a metric defined
by the diagonal of the
approximated Hessian

Gauss—Newton step

Steepest descent direction
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Benchmark Results

Fumili2 fit bench

» Use a binned likelihood to fit
signal peak over some
background in a histogram OO e i

» 1000 bins

» 7 parameter fits performing
numerical convolution

P repeat fit 1000 times with
different data and different initial
random parameter values

4 not too far from the minimum
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Benchmark Results

P Binned likelihood fit to signal peak over some background
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» New Fumili algorithm (Fumili2) works very well !
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Benchmark Results (2)

» With initial parameters values further away from minimum

Fit failures by minimizers (Far)
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ROOT Minimization Interface

» ROOT provides class ROOT: :Math: :Minimizer as general interface
for minimization

» Current default is TMinuit (old Minuit implementation)

plan to switch to use Minuit2 as default in the next release

» Implemented by several algorithms:

TMinuit

Minuit2

TFumili

GSL minimisers and fitters algorithms (Levenberg-Marquardt)
Simulated annealing and Genetic algorithm

R-Minimizer : minimiser based on algorithms from R

and now from Python: scipy.optimize
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Scipy optimizers

» New implementation of ROOT::Math::Minimizer using
scipy.optimize (from O. Zapata)

» scipy.optimize.minimize provides
several minimization algorithms

method : str or callable, optional
Type of solver. Should be one of
¢ ‘Nelder-Mead' (see here)
e 'Powell’ (see here)
e 'CG' (see here)
e 'BFGS’' (see here)

scipy.optimize.minimize + Newton-CG (see here)
e 'L-BFGS-B' (see here)
scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, * 'TNC' (see here)

e 'COBYLA' (see here)
e 'SLSQP’' (see here)
e ‘trust-constr’(see here)

hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

e ‘dogleg’ (see here)

e ‘trust-ncg’ (see here)

e ‘trust-exact’ (see here)
e ‘trust-krylov’ (see here)



Benchmark with Scipy

Fitting time for scipy minimizers Fit failures by scipy minimizers
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» Varying performance of scipy minimisers Time for CG is > 600 ms

e Minuit2 performs better!
» Fitting using AD
e without providing gradients scipy optimisers perform worse
B e.g. number of failures for TNC is more than 80% 16



Conclusions

» Minuit is more than 50 years old but it seems to be still the best
minimization algorithm for HEP fitting problems

» New algorithm (Fumili2) for least-square and binned likelihood fit

» Recent improvements in Minuit2:
e support for external gradient and Hessian (for AD users)
e improve logging and usability
e new strategy 3 for fixing some issues with high statistics fits

» Minuit2 is now the default minimiser in the latest ROOT version (6.32)

» Future work:
e implement support for non-trivial parameter constraints
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Minuit Algorithm

» Start with an initial approximation of inverse Hessian, H = (V2f(x))~!
e e.g. use diagonal second derivatives

» lterate :
e compute new step direction as p, = — Hg where g = Vf(x;)
e perform line search for optimal point x; | = X, + ap;
S = M1 T Xk
e compute the new gradient g atx;,,;andy, = g1 — &
Update inverse Hessian matrix H, according to BFGS or DFP update formula
T T T T T
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BFGS : H,,, = (I — 22 H,(1 - 2% ) + 2% pepo g, = H + 2ok TRk T
I's Is Is st 'H,
Vi Sk Vi Sk Vi Sk k Yk Yie Yk

e stop iteration when the Expected Distance from the Minimum (EDM)
p =g Hg issmall

» EDM provides a scale-invariant quantity to tell the convergence of method.
e This is unique in Minuit!
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Fumili Algorithm

» Old algorithm proposed already in 1961 by I. Silin

» Implemented later in the CERN library and made also available to
ROQOT with TFumili class.
e |t uses the Hessian approximation combined with a trust region

method.
B a multidimensional parallelepiped ("box") is defined around the point
and used its intersection with the Newton direction for the next step

B size of the parallelepiped changes dynamically
+ depending on the function improvements and the expectation from a
quadratic approximation.

» Faster than Minuit for least-square fits when the starting point is
close enough to the solution
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Benchmark Results

» Use a binned likelihood to fit signal peak over some background
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Benchmark Results (2)

» Using initial parameters values further away from minimum solution
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Benchmark Results (2)

» Using initial parameters values further away from minimum solution

Fitting time by minimizers (Far)
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Minuit2 (time)
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» Fitting time and failures in Scipy with numerical gradients

Fitting time for scipy minimizers
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