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Introduction
▶ Minuit

● Popular minimisation program developed in the 1970s by F. James.
● It is a variable-metric method (quasi-Newton method) based on the DFP / 

BFGS update of the inverse Hessian matrix.
● Works extremely well for fitting (e.g. parameter estimation) and it is has been 

used extensively in HEP.
● Available in ROOT since the beginning in the TMinuit class.

▶ Minuit2 
● Improved version re-written in C++ classes of same algorithm (MIGRAD)
● Available both in ROOT and as a standalone version
● Being used in the statistical analysis of LHC experiments
● Default minimizer in ROOT since latest release, 6.32
● iMinuit : python package built on top of Minuit2

■ used in large astroparticle physics experiments
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Characteristics  of Minuit
▶ Works very well, superior to gradient descent methods

● Much less number of iterations to converge 
● No need to perform matrix inversion at each iteration
● Approximate Hessian converges to true Hessian at the minimum
● Regularisation when Hessian is not positive defined 

■ add offset to the diagonal of H to make it positively defined
● Self-correcting if the Hessian approximation is not good enough

▶ Disadvantages: 
● Sensitive to initial parameters, it is a local minimiser and can get stuck in local 

minima
● Sensitive to bad numerical precision in function and gradient calculation 
● Does not scale to problems with a huge number of parameters 

■ proven to work to > ~ 1000 parameters (e.g Higgs combination fits)
■ will not work for training deep-learning models with millions of parameters

◆ need to use gradient descent in these cases
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External Gradient and Hessian

▶ Minuit requires the function gradient at each iteration
● computed by default numerically using a 3 points rule and adaptive step 

sizes 
■ well-tested and robust method
■ essential to having good precision when the gradient is close to zero (near 

the minimum) to converge rapidly 

▶ Support for external gradients provided by user
● needed for users exploiting Automatic Differentiation (AD)

▶ New:  Option in Minuit2 to provide external Hessian or only the 
diagonal of the Hessian (G2)  for seeding
● without providing Hessian, Minuit2 computes G2 numerically
● using initial user steps is often not good (need good estimates) 
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New improvements  in Minuit2

▶ Improved debugging
● can log and return to user all minimisation iteration states
● can provide a detailed output of each iteration (in debug mode)

▶ Possibility to add users callback functions at each iteration
▶ Thread-safety: Minuit2 can work in multi-threads if user 

provided function can
● support for likelihood or gradient parallelisation

▶ Addition of new minimization methods:
● BFGS: use only standard BFGS formula instead of the default mode 

of  using both BFGS or DFP formula depending on some conditions
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New Strategy 3

▶ Added a new strategy (strategy=3) thanks to Will B.
● Similar behaviour as strategy 1 and 2, but with improved 

Hessian computation
■ use diagonal Hessian for seeding as in strategy 1
■ use same number of cycles (iterations) as in strategy 2

● Compute off-diagonal Hessian elements using central 
derivatives (5-point rule: 3 extra function evaluation)

▶ This gives improved precision in Hessian in case of fits with 
large statistics
● Avoid the problem of having a non-positive defined Hessian 

after the minimization
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Specialized  Algorithms for  Fitting

▶ When minimising Least-square functions:

▶ Many algorithms have been developed on this approximation:
▶ e.g. Levenberg-Marquardt (GSL), Fumili, …
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Likelihood Fits
▶ For likelihood functions:

  and        

▶ the linear approximation is not always valid!

▶ For binned likelihood fits, can write the likelihood as 

      and after removing constant terms

   

  

 

▶ The same algorithms used for least-square fitting can be used !
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Specialized Fitting Methods
▶ Hessian can be computed directly from the first derivatives of the model function 

● It is like a linear fit approximation 
▶ This approximation is also good in the case of binned likelihood fits but not 

always for standard unbinned maximum likelihood fits
▶ Advantage of linearisation: 

● positive defined Hessian and easy to calculate gradients (one can use a 2-point 
rule)

● faster to converge than standard methods (Minuit/BFGS)
▶ Disadvantage:

● Initial point need to be close enough to the minimum to consider the 
approximation  valid

● require a more complex interface, needed the Jacobian matrix (number of fit 
points  number of parameters) at each iteration 

Hk ≈ JT
k Jk

×
9



New Fumili Algorithm

▶ New implementation of Fumili algorithm: Fumili2
● original algorithm from I. Silin  implemented in the Cernlib and TFumili 

class
▶ It is integrated into Minuit2 library

● re-using  Minuit2 interfaces classes
● working for both least-square and binned likelihood fits

▶ Based on trust-region using  
dogleg step
● trust region can be scaled  

using a metric defined  
by the diagonal of the  
approximated Hessian
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Benchmark Results

▶ Use a binned likelihood to fit 
signal peak over some 
background in a histogram
▶ 1000 bins 
▶ 7 parameter fits performing 

numerical convolution 
▶ repeat fit 1000 times with 

different data and different initial 
random parameter values
✦ not too far from the minimum
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Benchmark Results
▶ Binned likelihood fit to signal peak over some background

▶ New Fumili algorithm (Fumili2) works very well !
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Benchmark Results (2)

▶ With initial parameters values further away from minimum
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Using a starting point  
further away we start to  
see more fit failures ! 
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ROOT Minimization Interface

▶ ROOT provides class ROOT::Math::Minimizer as general interface 
for minimization

▶ Current default is TMinuit (old Minuit implementation)
● plan to switch to use Minuit2 as default in the next release

▶ Implemented by several algorithms: 
● TMinuit
● Minuit2 
● TFumili
● GSL minimisers and fitters algorithms (Levenberg-Marquardt)
● Simulated annealing and Genetic algorithm
● R-Minimizer : minimiser based on algorithms from R
● and now from Python: scipy.optimize
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Scipy optimizers

▶ New implementation of ROOT::Math::Minimizer using 
scipy.optimize (from O. Zapata)

▶ scipy.optimize.minimize provides 
 several minimization algorithms

15



Benchmark with Scipy
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▶ Varying performance of scipy minimisers
● Minuit2 performs better!

▶ Fitting using AD
● without providing gradients scipy optimisers perform worse 

■ e.g. number of failures for TNC is more than 80%

Time for CG is > 600 ms



Conclusions

▶ Minuit is more than 50 years old but it seems to be still the best 
minimization algorithm for HEP fitting problems

▶ New algorithm (Fumili2) for least-square and  binned likelihood fit
▶ Recent improvements in Minuit2: 

● support for external gradient and Hessian (for AD users)
● improve logging and usability
● new strategy 3 for fixing some issues with high statistics fits

▶ Minuit2 is now the default minimiser in the latest ROOT version (6.32)
▶ Future work: 

● implement support for non-trivial parameter constraints 
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Backup Slides
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Minuit Algorithm
▶ Start with an initial approximation of inverse Hessian,   

● e.g. use diagonal second derivatives
▶ Iterate : 

● compute new step direction as  where 
● perform line search for optimal point 

■
● compute the new gradient  at  and 
● Update inverse Hessian matrix  according to  BFGS or DFP update formula

BFGS :       DFP: 

● stop iteration when the Expected Distance from the Minimum (EDM)  
   is small 

▶ EDM provides a scale-invariant quantity to tell the convergence of method.
● This is unique in Minuit!
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Fumili Algorithm

▶ Old algorithm proposed already in 1961 by I. Silin
▶ Implemented later in the CERN library and made also available to 

ROOT with TFumili class. 
● It uses the Hessian approximation combined with a trust region 

method.
■ a multidimensional parallelepiped ("box") is defined around the point 

and used its intersection with the Newton direction for the next step
■ size of the parallelepiped changes dynamically 

◆ depending on the function improvements and the expectation from a 
quadratic approximation.

▶ Faster than Minuit for least-square fits when the starting point is 
close enough to the solution
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Benchmark Results

▶ Use a binned likelihood to fit signal peak over some background
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Benchmark Results (2)

▶ Using initial parameters values further away from minimum solution
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Using a starting point  
further away we start to  
see more fit failures ! 
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Benchmark Results (2)

▶ Using initial parameters values further away from minimum solution
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Using a starting point  
further away we see also 
longer fitting time 
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Benchmark using Scipy Minimisers

25Using Scipy Minimizer interface from O. Zapata

Poor performance  
o f scipy  w i th 
respect to Minuit!
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Scipy using Numerical Derivatives
▶ Fitting time and failures in Scipy with numerical gradients

26


