## Functional QCD and the QCD phase structure

PhD School XQCD 2024

Jan M. Pawlowski

Universität Heidelberg & ExtreMe Matter Institute

Lanzhou, July 14<sup>th</sup> - 16<sup>th</sup> 2024

GEFÖRDERT VOM



Bundesministerium für Bildung und Forschung



**STRUCTURES** CLUSTER OF EXCELLENCE



UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386















### Phase structure of QCD















### Phase structure of QCD







#### **Collection of reviews & lecture notes on the FRG & DSE**

# **Structure of the FRG: Aspects of the FRG**

The nonperturbative functional renormalization group and its applications

**QCD** at finite temperature and density within the fRG approach: An overview

## Material

**Topical reviews** 

JMP, Annals Phys. 322 (2007) 2831-2915

Dupuis et al, Phys.Rep. 910 (2021) 1-114

Fu, Commun.Theor.Phys. 74 (2022) 9, 097304

## Outline

## I) Functional Renormalisation group

## (II) Functional QCD and the QCD phase structure

## (I) Functional Renormalisation Group for QCD

#### Introduction to the functional renormalisation group

- Derivation of the flow equation
- Spontaneous symmetry breaking
- Systematic error control & optimisation

#### • Functional flows for QCD

- Flows for correlation functions & chiral symmetry breaking
- Getting dynamical: emergent hadrons & diquarks
- Dynamical hadronisation at work

## (II) Functional QCD and the QCD phase structure

### QCD at finite temperature and density

- Benchmarks in the vacuum
- Correlation functions at finite temperature
- Polyakov loop from functional approaches

#### QCD phase structure

- Locating the QCD phase boundary and the critical end point
- Fluctuations of conserved charges: Ripples of the critical end point

## (I) Functional Renormalisation Group for QCD

#### Introduction to the functional renormalisation group

- Derivation of the flow equation
- Spontaneous symmetry breaking
- Systematic error control & optimisation

#### • Functional flows for QCD

- Flows for correlation functions & chiral symmetry breaking
- Getting dynamical: emergent hadrons & diquarks
- Dynamical hadronisation at work

## Introduction to the functional renormalisation group

## **Derivation of the flow equation**

#### **Generating functional Z**

$$Z[J] = \frac{1}{\mathcal{N}} \int d\varphi \, e^{-S[\varphi] + \int_x \, J\varphi}$$

partition function

$$S[\varphi] = \frac{1}{2} \int_{x} \left[ \partial_{\mu} \varphi \partial_{\mu} \varphi + \mathbf{m}^{2} \varphi \right]$$

classical action

zero-dimensional example: 'Functional' flows for integrals





#### **Generating functional Z**

$$Z[J] = \frac{1}{\mathcal{N}} \int d\varphi \, e^{-S[\varphi] + \int_x \, J\varphi}$$

partition function

#### Effective action $\Gamma$

$$\Gamma[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi} + \phi]}$$

free energy





$$\begin{split} \varphi &= \hat{\varphi} + \phi \\ \langle \hat{\varphi} \rangle_{\frac{\delta\Gamma}{\delta\phi}} &= 0 \\ J &= \frac{\delta\Gamma}{\delta\phi} \end{split}$$

#### **Generating functional Z**

$$Z[J] = \frac{1}{\mathcal{N}} \int d\varphi \, e^{-S[\varphi] + \int_x \, J\varphi}$$

partition function

#### Effective action $\Gamma$

$$\Gamma[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi} + \phi]}$$

free energy

$$\Gamma[\phi] = \sup_{J} \left( \int_{x} J \cdot \phi - \log Z \right)$$

Legendre transform





$$\begin{split} \varphi &= \hat{\varphi} + \phi \\ \langle \hat{\varphi} \rangle_{\frac{\delta\Gamma}{\delta\phi}} &= 0 \\ J &= \frac{\delta\Gamma}{\delta\phi} \end{split}$$



#### Generating functional Z

$$Z[J] = \frac{1}{\mathcal{N}} \int d\varphi \, e^{-S[\varphi] + \int_x \, J\varphi}$$

partition function

#### Effective action $\Gamma$

$$\Gamma[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi} + \phi] + \int_x \, \hat{\varphi} \, \frac{\delta \Gamma[\phi]}{\delta \phi}}$$

free energy

#### **Dyson-Schwinger equation**



quantum equation of motion

$$\langle \varphi \rangle_J = \phi$$

$$egin{aligned} & arphi &= \hat{arphi} + \phi \ & \langle \hat{arphi} 
angle_{rac{\delta\Gamma}{\delta\phi}} &= 0 \ & J = rac{\delta\Gamma}{\delta\phi} \end{aligned}$$

#### **Dyson-Schwinger equation**

$$\frac{\delta\Gamma[\phi]}{\delta\phi(x)} = \left\langle \frac{\delta S[\hat{\varphi} + \phi]}{\delta\phi(x)} \right\rangle$$

Diagrammatics

$$S[\phi] = \frac{1}{2} \int_{x} \left[ \partial_{\mu} \phi \partial_{\mu} \phi + m^{2} \phi^{2} + \frac{\lambda}{4} \phi^{4} \right]$$

#### **Dyson-Schwinger equation**

$$\frac{\delta\Gamma[\phi]}{\delta\phi(x)} = \left\langle \frac{\delta S[\hat{\varphi} + \phi]}{\delta\phi(x)} \right\rangle$$

Diagrammatics

$$S[\phi] = \frac{1}{2} \int_{x} \left[ \partial_{\mu} \phi \partial_{\mu} \phi + m^{2} \phi^{2} + \frac{\lambda}{4} \phi^{4} \right]$$









#### **Dyson-Schwinger equation**

$$\frac{\delta\Gamma[\phi]}{\delta\phi(x)} = \left\langle \frac{\delta S[\hat{\varphi} + \phi]}{\delta\phi(x)} \right\rangle$$

**Diagrammatics** 

$$S[\phi] = \frac{1}{2} \int_{x} \left[ \partial_{\mu} \phi \partial_{\mu} \phi + m^{2} \phi^{2} + \frac{\lambda}{4} \phi^{4} \right]$$











Effective action  $\Gamma$ 

$$\Gamma[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi}+\phi] + \int_x \, \hat{\varphi} \, \frac{\delta\Gamma[\phi]}{\delta\phi}}$$

No quantum fluctuations

$$\Gamma[\phi] = -\log e^{-S[\phi]} = S[\phi]$$



Effective action  $\Gamma$ 

$$\Gamma[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi} + \phi]}$$



#### Effective action $\Gamma$

$$\Gamma_k[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\phi + \hat{\varphi}] + \frac{1}{2} \int_p}$$



 $\hat{\varphi}(p)R_k(p^2)\hat{\varphi}(-p) + \int_x \hat{\varphi}(x) \frac{\delta\Gamma_k[\phi]}{\delta\phi(x)}$ 

DSE  $\frac{\delta \Gamma_k[\phi]}{\delta \phi(x)}$  $\delta S[\hat{\varphi} +$ 



### Effective action $\Gamma$

$$\Gamma_k[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\phi + \hat{\varphi}] + \frac{1}{2} \int_p}$$



 $\hat{\varphi}(p)R_k(p^2)\hat{\varphi}(-p) + \int_x \hat{\varphi}(x) \frac{\delta\Gamma_k[\phi]}{\delta\phi(x)}$ 

 $p^2$ 

$$\frac{R_k(p^2)}{2k^2}$$

$$t = \log \frac{k}{\Lambda}$$

18

#### Effective action $\Gamma$

$$\Gamma_k[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\phi + \hat{\varphi}] + \frac{1}{2} \int_p}$$



$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \int \frac{d^4 p}{(2\pi)^4} \left\langle \hat{\varphi}(p) \hat{\varphi}(-p) \right\rangle \partial_t R_k(p^2)$$

Flow

 $\hat{\varphi}(p)R_k(p^2)\hat{\varphi}(-p) + \int_x \hat{\varphi}(x) \frac{\delta\Gamma_k[\phi]}{\delta\phi(x)}$ 

$$t = \log \frac{k}{\Lambda}$$

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \int \frac{d^4 p}{(2\pi)^4} \left\langle \hat{\varphi}(p) \hat{\varphi}(-p) \right\rangle \partial_t R_k(p^2)$$

Propagator

Flow



$$G^{-1}[\phi] = \Gamma_k^{(2)}[\phi] + R_k$$

$$t = \log \frac{k}{\Lambda}$$

$$- = \langle \hat{\varphi}(x)\hat{\varphi}(y)\rangle_c$$



 $\Gamma_k^{(2)}[\phi]$  $S^{(2)}[\phi]$ 

$$\hat{\varphi}(p)\hat{\varphi}(-p)\rangle \partial_t R_k(p^2)$$

$$t = \log \frac{k}{\Lambda}$$

$$- = \langle \hat{\varphi}(x)\hat{\varphi}(y)\rangle_c$$

$$\Gamma_k^{(2)}[\phi] + R_k$$

$$\Gamma_k[\phi] = -\log \int d\hat{\varphi} \, e^{-S[\hat{\varphi}+\phi] + \frac{1}{2} \int_p \hat{\varphi}(p) R_k(p^2) \hat{\varphi}(-p) + \int_x \hat{\varphi} \, \frac{\delta \Gamma_k[\phi]}{\delta \phi}}$$

20

Flow

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}}$$

#### Diagrammatics

#### (Inverse) propagator



Flow

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}}$$

#### (Inverse) propagator

fRG



DSE

 $\partial_t \Gamma^{(n)} = \operatorname{Flow}_n[\Gamma^{(m)}; m = 2, ..., n+2]$ 



$$\Gamma^{(n)} = \text{DSE}_n[S^{(m)}, \Gamma^{(m)}; m = 2, ..., n+2]$$

22

Flow

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}}$$

### **Properties**

- 1-loop exact
- closed
- **RG-scaling**
- energy/particle-number conservation

automatic







#### only in specific approximation schemes



energy/particle-number conservation

automatic

only in specific approximation schemes

$$\partial_t \Gamma_k[\phi] = \frac{1}{2}$$

#### **Derivative expansion**

- Expansion in powers of momenta
- Controlled in the presence of a mass gap  $m_{
  m gap}$
- **Expansion parameter**



#### **Vertex expansion**

- Expansion in number n of external fields
- **Controlled in perturbation theory/presence of symmetries**
- Expansion parameter n

### Mixtures, exact resummation schemes, ....

$$\operatorname{Fr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k$$

$$\partial_t \Gamma_k[\phi] = \frac{1}{2}$$

#### **Derivative expansion**

- Expansion in powers of momenta
- Controlled in the presence of a mass gap  $m_{
  m gap}$
- **Expansion parameter**



#### Lowest order: 0th order

$$\Gamma_k[\phi] = \frac{1}{2} \int_p \phi \, p^2 \phi + \int_x V_k(\phi) + O(p^2)$$

$$\operatorname{Fr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k$$

$$\partial_t \Gamma^{(n)} = \operatorname{Flow}_n[\Gamma^{(m)}; m = 2, ..., n]$$



$$\Gamma_k^{(2)}[\phi](p,q) = \left(p^2 + V_k''(\phi)\right) (2\pi)^d \delta(p)$$





$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k$$

#### **Derivative expansion**

Lowest order: 0th order

$$\Gamma_k[\phi] = \frac{1}{2} \int_p \phi \, p^2 \phi + \int_x V_k(\phi) + O(p^2)$$

$$\partial_t V_k(\phi) = \frac{1}{d} \frac{\Omega_d}{(2\pi)^d} \frac{k^{2+d}}{k^2 + V_k''(\phi)}$$

$$\Gamma_k^{(2)}[\phi](p,q) = \left(p^2 + V_k''(\phi)\right) (2\pi)^d \delta(p)$$

$$R_{k,\text{opt}}(p^2) = (k^2 - p^2)\theta(k^2)$$

$$\partial_t R_{k,\text{opt}}(p^2) = 2k^2\theta(k^2)$$

 $\Gamma^{(2)}[\phi](p) + R_{k,\text{opt}}(p^2) = \left[k^2 + V''(\phi)\right]\theta(k^2 - p^2) + (p^2 + V''(\phi))\theta(p^2 - k^2)$ 



$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k$$

#### **Derivative expansion**

Lowest order: 0th order

$$\Gamma_k[\phi] = \frac{1}{2} \int_p \phi \, p^2 \phi + \int_x V_k(\phi) + O(p^2)$$

Flow

$$\partial_t V_k(\phi) = \frac{1}{d} \frac{\Omega_d}{(2\pi)^d} \frac{k^{2+d}}{k^2 + V_k''(\phi)}$$

$$\Omega_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$$

$$\Gamma_k^{(2)}[\phi](p,q) = \left(p^2 + V_k''(\phi)\right) (2\pi)^d \delta(p)$$

$$R_{k,\text{opt}}(p^2) = (k^2 - p^2)\theta(k^2)$$

$$\partial_t R_{k,\text{opt}}(p^2) = 2k^2\theta(k^2)$$

 $\Gamma^{(2)}[\phi](p) + R_{k,\text{opt}}(p^2) = \left[k^2 + V''(\phi)\right]\theta(k^2 - p^2) + (p^2 + V''(\phi))\theta(p^2 - k^2)$ 



$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_t R_k$$

#### **Derivative expansion**

Lowest order: 0th order

$$\Gamma_k[\phi] = \frac{1}{2} \int_p \phi \, p^2 \phi + \int_x V_k(\phi) + O(p^2)$$



$$\Gamma_k^{(2)}[\phi](p,q) = \left(p^2 + V_k''(\phi)\right) (2\pi)^d \delta(p)$$

$$R_{k,\text{opt}}(p^2) = (k^2 - p^2)\theta(k^2)$$

$$\partial_t R_{k,\text{opt}}(p^2) = 2k^2\theta(k^2)$$

 $\Gamma^{(2)}[\phi](p) + R_{k,\text{opt}}(p^2) = \left[k^2 + V''(\phi)\right]\theta(k^2 - p^2) + (p^2 + V''(\phi))\theta(p^2 - k^2)$ 



## Spontaneous symmetry breaking

## **Approximation schemes & phase structure**



- bosonic flow is symmetry-restoring
- flow guarantees convexity of effective action





## **Approximation schemes & phase structure**



- bosonic flow is symmetry-restoring
- flow guarantees convexity of effective action




## **Approximation schemes & phase structure**



**Example: 3d critical exponents with fRG** 

Simple approximation: LPA'  $\Gamma_k[\phi] = \frac{1}{2} \int_p Z_\phi \,\phi(p) \, p^2 \,\phi(-p) + \int_x V_k(\phi)$ 

**Taylor** exp

A simple program to compute critical exponents in O(N)-models with the Wetterich equation

pansion 
$$V_k(\phi) = \sum_{n=1}^{N_{\max}} \frac{\lambda_n}{n!} (\phi^2 - \phi_{0,k}^2)^n$$

**Michael Scherer** 

#### Ising universality

$$N = 1: \ \nu_{\rm Ising} = 0.630$$

fRG: LPA'

 $N = 1: \ \nu_{\text{Ising}} = 0.637...$ 





 $\partial_t V_k(\phi) = -$ 



- bosonic flow is symmetry-restoring
- fermionic flow is symmetry-breaking
- competing dynamics decides about fate of symmetries
- flow guarantees convexity



 $\partial_t V_k(\phi) = -$ 



- bosonic flow is symmetry-restoring
- fermionic flow is symmetry-breaking
- competing dynamics decides about fate of symmetries
- flow guarantees convexity



'governs general phase structures'



 $\partial_t V_k(\phi) = -\left(\right.$ 



- bosonic flow is symmetry-restoring
- fermionic flow is symmetry-breaking
- competing dynamics decides about fate of symmetries
- flow guarantees convexity



'governs general phase structures'





 $\partial_t V_k(\phi) = -$ 



- bosonic flow is symmetry-restoring
- fermionic flow is symmetry-breaking
- competing dynamics decides about fate of symmetries
- flow guarantees convexity



Grossi, Wink, SciPost Phys. Core 6 (2023)

State of the art time steppers Ihssen, Sattler, Wink, CPC 300 (2024) 109182

'governs general phase structures'









$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \Gamma_k[\phi]$$

### $g_3$ $\Gamma_{\Lambda} = S$ $A_k^{(3)}$ $R_{1}^{(2)}$ $R_k^{(1)}$ ${\stackrel{\bullet}{\bullet}} \{g_i\}$ $\Gamma_0 = \Gamma$ $\searrow g_2$ $\downarrow g_1$

full flow



approximated flow

Optimisation: find  $R_k^{(2)}$ !

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \Gamma_k[\phi]$$

### $g_3$ $\Gamma_{\Lambda} = S$ $R_{k}^{(3)}$ (2) $R_k^{(1)}$ • $\{g_i\}$ $\Gamma_0 = \Gamma$ $\blacktriangleright g_2$ $\checkmark g_1$

full flow

#### **Principle of minimal sensitivity**

Liao, Polonyi, Strickland, NPB 567 (2000) 493-514 eg. Canet, Delamotte, Mouhanna, Vidal, PRD 67 (2003) 065004



approximated flow

**Optimisation:** find  $R_k^{(2)}$ !

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \Gamma_k[\phi]$$

### $g_3$ $\Gamma_{\Lambda} = S$ $R_{\mu}^{(3)}$ (2) $R_{\nu}^{(1)}$ $\{g_i\}$ $\Gamma_0 = \Gamma$ $\searrow g_2$ $\downarrow g_1$

full flow

#### Principle of minimal sensitivity

Liao, Polonyi, Strickland, NPB 567 (2000) 493-514 eg. Canet, Delamotte, Mouhanna, Vidal, PRD 67 (2003) 065004



approximated flow

**Optimisation:** find  $R_{k}^{(2)}$ !

33

#### Most rapid convergence at fixed points

Litim, PLB 486 (2000) 92-99

**Functional optimisation: Integrability** 

JMP, AP 322 (2007) 2831 JMP, Scherer, Schmidt, Wetzel, AP 384 (2017) 165



full flow



#### **Functional optimisation: Integrability**

JMP, AP 322 (2007) 2831 JMP, Scherer, Schmidt, Wetzel, AP 384 (2017) 165

34

# **Flows for correlation functions** & chiral symmetry breaking



#### Dupuis et al, Phys.Rept. (2021) Fu, Commun.Theor.Phys. 74 (2022) 9, 097304

ab initio







 $\Phi = (A_{\mu}, c, \bar{c}, q, \bar{q})$ 

functional RG:

#### Dupuis et al, Phys.Rept. (2021) Fu, Commun.Theor.Phys. 74 (2022) 9, 097304

#### free energy at momentum



quarks & gluons

ab initio



quark quantum fluctuations (RG-scale k:  $t = \ln k$ )

37







$$functional RG: \left(\partial_t + \int_x \dot{\Phi} \frac{\delta}{\delta \Phi}\right) \Gamma_k[\Phi] = \begin{bmatrix} \frac{1}{2} & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac{1}{2} & \frac{\delta}{\delta \Phi} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 & \frac{\delta}{\delta \Phi} \\ \frac$$

free energy/ grand potential

$$\Phi = (A_{\mu}, c, \bar{c}, q, \bar{q})$$

#### Dupuis et al, Phys.Rept. (2021) Fu, Commun.Theor.Phys. 74 (2022) 9, 097304

ab initio

#### fRG approach with emergent composites/dynamical hadronisation











functional RG:

 $\partial_t \Gamma_k[\Phi]$  $=\frac{-}{2}$ 

free energy/ grand potential

**Correlation functions** 

glue quantum fluctuations



quark quantum fluctuations

functional RG:



gluon propagator  $\langle A_\mu A_
u 
angle(p)$ 

Pure glue

**Correlation functions** 

glue quantum fluctuations

> quark quantum fluctuations

 $\partial_t \Gamma_k[\Phi]$ functional RG: = $\overline{2}$ free energy/ grand potential gluon propagator Pure glue  $\partial_t \dots = \frac{2}{2}$  $\partial_t \quad \text{mmOulline} = \frac{2}{2}$ HO HE  $\bigcirc$  $\hat{\mathbf{Q}}$  $\oplus \frac{4}{2}$  $\partial_t$ Oum  $\otimes$  $\partial_{t} \int_{e^{-5}}^{2} \partial_{t} \int_{e^{-5}}^{2} \int_{e^{-5}}^{e^{-5}} \partial_{t} \int_{e^{-5}}^{e^{-5}} \partial_{t}$ 

glue quantum fluctuations



quark quantum fluctuations

#### **Correlation functions**



#### --- 1-loop exact

functional RG:



**Correlation functions** 

quark propagator  $\mathcal{D}$  $\langle qq \rangle$ 

gluon propagator (p) $A_{\mu}A_{\nu}$ 

no hadronic composites

glue quantum fluctuations

> quark quantum fluctuations

functional RG:



gluon propagator  $(\mathcal{D})$  $A_{\mu}A_{\nu}$ 

quark propagator  $\langle q\bar{q}\rangle$  $(\mathcal{D})$ 

no hadronic composites

glue quantum fluctuations

> quark quantum fluctuations

#### **Correlation functions**

quark-gluon vertex  $, p_2)$  $\langle q\bar{q}A$ Eight tranverse tensor structures

functional RG:



gluon propagator (p) $A_{\mu}A_{\nu}$ 

quark-gluon vertex quark propagator  $\langle q\bar{q}A_{\mu}\rangle$  $(p_1, p_2)$  $\langle q\bar{q}\rangle(p)$ Eight tranverse tensor structures

no hadronic composites



quark quantum fluctuations

#### **Correlation functions**

glue

quark—anti-quark scattering

 $\langle q\bar{q}q\bar{q}\rangle(p_1,p_2,p_3)$ 

functional RG:

quark propagator

 $\langle q \bar{q} \rangle(p)$ 



gluon propagator (p) $A_{\mu}A_{\nu}$ 



no hadronic composites



quark quantum fluctuations

#### **Correlation functions**

glue

functional RG:





2 tensor structures

$$\Gamma_{\text{mat}} = \int_{p} \bar{q}(-p) \left[ Z_{q}(p) i \not p + M_{q}(p) \right] q(p) + \sum_{i=1}^{10} \int_{\mathbf{p}} \lambda_{\bar{q}^{2}q^{2}}^{(i)}(\mathbf{p}) \left( \bar{q}^{2} \mathcal{T}_{\bar{q}^{2}q^{2}}^{(i)} q^{2} \right) (\mathbf{p}) + \cdots$$

$$\phi$$
 =

glue quantum fluctuations

> quark quantum fluctuations



Two flavours: 10 momentum-independent tensor structures

**40** 











Chiral symmetry breaking in a nutshell







Chiral symmetry breaking in a nutshell

$$= 2\lambda - A(k, M_q) \lambda^2$$







Chiral symmetry breaking in a nutshell

$$= 2\lambda - A(k, M_q) \lambda^2 - B(k, M_q, M_{\rm gap}) \lambda \alpha_s$$

#### Chiral symmetry breaking in a nutshell







$$= \left[2 - B(k, M_q, M_{gap})\alpha_s\right]\lambda - A(k, M_q)\lambda^2 - C(k, M_q, M_q)\lambda^2$$



#### Chiral symmetry breaking in a nutshell







$$= \left[2 - B(k, M_q, M_{gap})\alpha_s\right]\lambda - A(k, M_q)\lambda^2 - C(k, M_q, M_q)\lambda^2$$



### Getting dynamical: emergent hadrons & diquarks

Gies, Wetterich, PRD 65 (2002) 065001 PRD 69 (2004) 025001

JMP, AP 322 (2007) 2831-2915 Floerchinger, Wetterich, PLB 680 (2009) 371

Fu, JMP, Rennecke, PRD 101, (2020) 054032 Fukushima, JMP, Strodthoff, 2103.01129

functional RG: 
$$\left(\partial_t + \int_x \dot{\Phi} \frac{\delta}{\delta \Phi}\right) \Gamma_k[\Phi] = \frac{1}{2}$$

#### 'DynHad for mesons & diquarks is BSE-DSE for QCD in a 'unified' effective action approach'





#### **Dynamical hadronisation**



Implementation:

functional RG: 
$$\left(\partial_t + \int_x \dot{\Phi} \frac{\delta}{\delta \Phi}\right) \Gamma_k[\Phi] = \frac{1}{2}$$



Implementation:

functional RG: 
$$\left(\partial_t + \int_x \dot{\Phi} \frac{\delta}{\delta \Phi}\right) \Gamma_k[\Phi] = \frac{1}{2}$$

#### Consider path integral in the presence of sources for composite operators

$$Z[J_q, J_{\bar{q}}, J_{\mathcal{O}}] = \int dq d\bar{q}$$



JMP, AP 322 (2007) 2831-2915

 $J_e e^{-S[q,\bar{q}] + \int J_q q - \bar{q} J_{\bar{q}} + \int J_{\mathcal{O}} \mathcal{O}[q,\bar{q}]}$ 

Implementation:

functional RG: 
$$\left(\partial_t + \int_x \dot{\Phi} \frac{\delta}{\delta \Phi}\right) \Gamma_k[\Phi] = \frac{1}{2}$$

#### Consider path integral in the presence of sources for composite operators

$$Z[J_q, J_{\bar{q}}, J_{\mathcal{O}}] = \int dq d\bar{q} \, e^{-S[q,\bar{q}] + \int J_q q - \bar{q} J_{\bar{q}} + \int J_{\mathcal{O}} \, \mathcal{O}[q,\bar{q}]}$$

Choose scale-dependent  $\mathcal{O}_k[q, \overline{q}]$  'to optimise dynamics'!

$$\partial_t \Gamma_k[A_\mu, q, \bar{q}]$$



JMP, AP 322 (2007) 2831-2915

$$\partial_t \Gamma_k[\Phi] + \partial_t \mathcal{O}_k^{(i)}[\Phi] \frac{\delta \Gamma_k}{\delta \Phi_i}$$

$$\Phi = (A_{\mu}, q, \bar{q}, \langle \mathcal{O}^{(1)} \rangle, \dots)$$

Implementation:

$$\frac{\lambda_{\psi}}{2} \left[ (\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\vec{\tau}\psi)^2 \right] = \left[ ih\,\bar{\psi}(\tau\cdot\Phi)\psi + \frac{1}{2}m_{\phi}^2\Phi^2 \right]_{\mathrm{EoM}(\Phi)}$$



#### Consider path integral in the presence of sources for composite operators

$$Z[J_q, J_{\bar{q}}, J_{\mathcal{O}}] = \int dq d\bar{q}$$

#### **Common choices**

$$T^i = (1, \gamma_5 \vec{\sigma})$$

Scalar-pseudoscalar channel

2001 - : Braun, Flörchinger, Fu Gies, JMP, Rennecke, Wetterich, ...

**Hubbard-Stratonovich** 



JMP, AP 322 (2007) 2831-2915

 $e^{-S[q,\bar{q}]+\int J_q q - \bar{q}J_{\bar{q}} + \int J_{\mathcal{O}} \mathcal{O}[q,\bar{q}]}$ 



Implementation:

$$\frac{\lambda_{\psi}}{2} \left[ (\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\vec{\tau}\psi)^2 \right] = \left[ ih\,\bar{\psi}(\tau\cdot\Phi)\psi + \frac{1}{2}m_{\phi}^2\Phi^2 \right]_{\mathrm{EoM}(\Phi)}$$



#### Consider path integral in the presence of sources for composite operators

$$Z[J_q, J_{\bar{q}}, J_{\mathcal{O}}] = \int dq d\bar{q} \, e^{-S[q,\bar{q}] + \int J_q q - \bar{q} J_{\bar{q}} + \int J_{\mathcal{O}} \, \mathcal{O}[q,\bar{q}]}$$

#### **Common choices**

$$T^i = (1, \gamma_5 \vec{\sigma})$$

Scalar-pseudoscalar channel



2001 - : Braun, Flörchinger, Fu Gies, JMP, Rennecke, Wetterich, ...

**Hubbard-Stratonovich** 



JMP, AP 322 (2007) 2831-2915

$$=\gamma_0$$

**Density channel** (part of vector multiplet)


Implementation:

$$\frac{\lambda_{\psi}}{2} \left[ (\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\vec{\tau}\psi)^2 \right] = \left[ ih\,\bar{\psi}(\tau\cdot\Phi)\psi + \frac{1}{2}m_{\phi}^2\Phi^2 \right]_{\mathrm{EoM}(\Phi)}$$



### Consider path integral in the presence of sources for composite operators

$$Z[J_q, J_{\bar{q}}, J_{\mathcal{O}}] = \int dq d\bar{q} e^{-S[q,\bar{q}] + \int J_q q - \bar{q} J_{\bar{q}} + \int J_{\mathcal{O}} \mathcal{O}[q,\bar{q}]}$$

#### **Common choices**

$$T^i = (1, \gamma_5 \vec{\sigma})$$

Scalar-pseudoscalar channel



2001 - : Braun, Flörchinger, Fu Gies, JMP, Rennecke, Wetterich, ...

**Hubbard-Stratonovich** 



JMP, AP 322 (2007) 2831-2915

$$=(\gamma_0\,,\,ec\gamma)$$

**Density channel** (part of vector multiplet)



Implementation:

$$\frac{\lambda_{\psi}}{2} \left[ (\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\vec{\tau}\psi)^2 \right] = \left[ ih\,\bar{\psi}(\tau\cdot\Phi)\psi + \frac{1}{2}m_{\phi}^2\Phi^2 \right]_{\mathrm{EoM}(\Phi)}$$



### Consider path integral in the presence of sources for composite operators

$$Z[J_q, J_{\bar{q}}, J_{\mathcal{O}}] = \int dq d\bar{q} e^{-S[q,\bar{q}] + \int J_q q - \bar{q} J_{\bar{q}} + \int J_{\mathcal{O}} \mathcal{O}[q,\bar{q}]}$$

#### **Common choices**

$$T^i = (1, \gamma_5 \vec{\sigma})$$

Scalar-pseudoscalar channel



**Density channel** (part of vector multiplet)

2001 - : Braun, Flörchinger, Fu Gies, JMP, Rennecke, Wetterich, ...

**Hubbard-Stratonovich** 



JMP, AP 322 (2007) 2831-2915

$$=(\gamma_0\,,\,ec\gamma)$$

**Diquark channels** 



#### Implementation:

$$\frac{\lambda_{\psi}}{2} \left[ (\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\vec{\tau}\psi)^2 \right] = \left[ ih\,\bar{\psi}(\tau\cdot\Phi)\psi + \frac{1}{2}m_{\phi}^2\Phi^2 \right]_{\text{EoM}(\Phi)}$$



#### **Common choices**

$$T^i = (1, \gamma_5 \vec{\sigma})$$

#### Scalar-pseudoscalar channel



**Density channel** (part of vector multiplet)

$$\mathbf{N_f}=\mathbf{2:}\mathbf{10}$$

Momentum-independent tensor structures

**Hubbard-Stratonovich** 

$$\lambda_{\psi} = \frac{h^2}{m_{\phi}^2}$$
$$\Phi = (\sigma, \vec{\pi})$$
$$\tau \cdot \Phi = \sigma + i\gamma_5$$

 $T^i = (\gamma_0, \vec{\gamma})$ 

**Diquark channels** 

#### **Complete basis**

$$\mathbf{N_f} = \mathbf{3}:$$
 26



#### Implementation:

$$\frac{\lambda_{\psi}}{2} \left[ (\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\vec{\tau}\psi)^2 \right] = \left[ ih\,\bar{\psi}(\tau\cdot\Phi)\psi + \frac{1}{2}m_{\phi}^2\Phi^2 \right]_{\text{EoM}(\Phi)}$$



#### **Common choices**

$$T^i = (1, \gamma_5 \vec{\sigma})$$

#### Scalar-pseudoscalar channel



**Density channel** (part of vector multiplet)

$$\mathbf{N_f}=\mathbf{2:}\mathbf{10}$$

Momentum-independent tensor structures

**Hubbard-Stratonovich** 

$$\lambda_{\psi} = \frac{h^2}{m_{\phi}^2}$$
$$\Phi = (\sigma, \vec{\pi})$$
$$\tau \cdot \Phi = \sigma + i\gamma_5$$

 $T^i = (\gamma_0, \vec{\gamma})$ 

**Diquark channels** 

#### **Complete basis**

$$\mathbf{N_f}=\mathbf{3:26}$$

All tensor structures for  $\, N_f = 2:256 \,$ 



Implementation:

$$\frac{\lambda_{\psi}}{2} \left[ (\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5 \vec{\tau}\psi)^2 \right] = \left[ i h \bar{\psi}(\tau \cdot \Phi)\psi + \frac{1}{2}m_{\phi}^2 \Phi^2 \right]_{\text{EoM}(\Phi)}$$
  
Hubbard-Stratonovich



### **General dynamical hadronisation**

hadronised Flow

$$\frac{\partial}{\partial t}\Big|_{\phi}\Gamma_{k}[\phi] = \frac{1}{2}G_{k,\phi}\dot{R}_{k,\phi} + R_{k}G_{k,\phi}\frac{\delta\dot{\phi}}{\delta\phi} - \frac{\delta\Gamma}{\delta\phi}\dot{\phi}$$

$$\phi = (A_{\mu}, C, \bar{C}, q, \bar{q}, \Phi, ..., n, \bar{n}, ...)$$

How to fix 
$$\phi_k$$
&

$$\lambda_{\psi} = \frac{h^2}{m_{\phi}^2}$$
$$\Phi = (\sigma, \vec{\pi})$$
$$\tau \cdot \Phi = \sigma + i\gamma_5$$

#### baryons mesons



 $\dot{\Phi}_k \simeq \dot{A}_k \bar{\psi} \tau \psi + \dot{B}_k \Phi_k + \dot{C}_k$ 



#### Implementation:





Implementation:





Flow for four-fermion coupling  $\hat{\lambda}_{\psi} = \lambda_{\psi} k^2$  with infrared scale k



+ ....

 $\partial_t \Phi$  - terms

**50** 

Implementation:





Flow for four-fermion coupling  $\hat{\lambda}_{\psi} = \lambda_{\psi} k^2$  with infrared scale k

#### Implementation:

Full bosonisation  $\hat{\lambda}_{\psi}=0$ 





=0

#### ! Reminder !

Full bosonisation  $\hat{\lambda}_{\psi} = 0$  Really?





(i) Complete dynamical hadronisation of one tensor channel removes one momentum channel!

(ii) Residual four-quark vertex left!



### Stability & decoupling





### **Cutoff scale of dynamical** chiral symmetry breaking



### Stability & decoupling



### Stability & decoupling



#### Stability & decoupling



#### quarks & gluons

#### Stability & decoupling



#### **Pions: Chiral perturbation theory**

#### quarks & gluons

55

Mesons & diquarks:



Mesons & diquarks:





#### **Mesons & diquarks:**







#### **Schematical flow**

#### Fukushima, JMP, Strodthoff, 2103.01129

#### **Mesons & diquarks:**







#### **Schematical flow**

#### Fukushima, JMP, Strodthoff, 2103.01129

#### **Mesons & diquarks:**







#### **Schematical flow**

baryons:

Dominant UV-process:





baryons:

**Dominant UV-process:** 











baryons:

**Baryon formation processes** 



#### **Baryonisation**



#### baryons:

three-quark scattering



#### Baryonisation

quark-diquark scattering



#### baryons:

three-quark scattering



Yukawa-flows with baryonisation





nucleon-nucleon —  $\omega_{\mu}$  scattering:



#### Baryonisation

quark-diquark scattering





'DynHad for mesons, diquarks & baryons is Faddeev-BSE-DSE for QCD in a 'unified' effective action approach'

$$\left(\partial_t + \partial_t \Phi_{i,k}[\Phi] \frac{\delta}{\delta \Phi_i}\right)$$



### (II) Functional QCD and the QCD phase structure

### QCD at finite temperature and density

- Benchmarks in the vacuum
- Correlation functions at finite temperature
- Polyakov loop from functional approaches

### QCD phase structure

- Locating the QCD phase boundary and the critical end point
- Fluctuations of conserved charges: Ripples of the critical end point

The unreasonable effectiveness of low energy effective theories and how to use them

### Dalian, Beijing, Darmstadt, Heidelberg, Gießen

### Braun, Chen, Fu, Gao, Geissel, Huang, Lu, Ihssen, Pawlowski, Rennecke, Sattler, Schallmo, Stoll, Tan, Töpfel, Turnwald, Wessely, Wen, Wink, Yin, Zheng, Zorbach



# Functional flows for QCD











63



















Example: 4-quark scattering vertex









Example: 4-quark scattering vertex







The unreasonable effectiveness of low energy effective theories






### fQCD: workflow

**European Research Council** 

Established by the European Commission

**64** 



## **QCD** at finite temperature and density

## Benchmarks in the vacuum

# **Current set of correlation functions**



Extension, work in progress:

Fu, Huang, Ihssen, JMP, Rennecke, Sattler, Tan

Cyrol, Mitter, JMP, Strodthoff, PRD 97 (2018) 054006, PRD 97 (2018) 054015

Cyrol, Fister, Mitter, JMP, Strodthoff, PRD 94 (2016) 054005

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035 67

# **Current set of correlation functions**



Extension, work in progress:

Fu, Huang, Ihssen, JMP, Rennecke, Sattler, Tan

Cyrol, Mitter, JMP, Strodthoff, PRD 97 (2018) 054006, PRD 97 (2018) 054015

Cyrol, Fister, Mitter, JMP, Strodthoff, PRD 94 (2016) 054005

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035 67

## **Euclidean propagators**





**Two-flavour QCD** 





## **Euclidean propagators**





simple correlations

**Two-flavour QCD** 





## Vertices



Aiming at apparent convergence



## Vertices



Aiming at apparent convergence



## Quark-gluon vertex

$$\left[\Gamma_{\bar{q}qA}^{(3)}\right]_{\mu}^{a}(p,q) = 1_{2\times 2}^{\text{flav}} T^{a} \sum_{i=1}^{8} \lambda_{i}(p,q) \left[\mathcal{T}_{\bar{q}qA}^{(i)}\right]_{\mu}(p,q)\right]$$

$$\begin{split} \bar{q} \not{D} q : & \left[ \mathcal{T}_{\bar{q}qA}^{(1)} \right]_{\mu} (p,q) = -i \gamma_{\mu} \\ \bar{q} \not{D}^{3} q : & \left[ \mathcal{T}_{\bar{q}qA}^{(5)} \right]_{\mu} (p,q) = i \left( \not{p} + \not{q} \right) (p-q)_{\mu} \\ & \left[ \mathcal{T}_{\bar{q}qA}^{(6)} \right]_{\mu} (p,q) = i \left( \not{p} - \not{q} \right) (p-q)_{\mu} \\ & \left[ \mathcal{T}_{\bar{q}qA}^{(7)} \right]_{\mu} (p,q) = \frac{i}{2} [\not{p}, \not{q}] \gamma_{\mu} \end{split}$$

Aiming at apparent convergence

### covariant expansion scheme

$$\bar{q} \not{D}^2 q : \left[ \mathcal{T}_{\bar{q}qA}^{(2)} \right]_{\mu} (p,q) = (p-q)_{\mu} \mathbf{1}_{4 \times 4}$$
$$\left[ \mathcal{T}_{\bar{q}qA}^{(3)} \right]_{\mu} (p,q) = (\not{p} - \not{q}) \gamma_{\mu}$$
$$\left[ \mathcal{T}_{\bar{q}qA}^{(4)} \right]_{\mu} (p,q) = (\not{p} + \not{q}) \gamma_{\mu}$$

quenched: Mitter, JMP, Strodthoff, PRD 91 (2015) 054035 70 Cyrol, Mitter, JMP, Strodthoff, PRD 97 (2018) 054006

# Quark-gluon vertex



# Quark-gluon vertex





p,q in MeV

 $p^2 q^2$ 

 $\theta = -$ 

# Quark-gluon vertex



up-to-date 1st principles works:

### FunMethods: Williams, EPJ A51 (2015) 57

Sanchis-Alepuz, Williams, PLB 749 (2015) 592 Williams, Fischer, Heupel, PRD 93 (2016) 034026

Aguilar, Binosi, Ibanez, Papavassiliou, PRD 89 (2014) 065027 Binosi, Chang, Papavassiliou, Qin, Roberts, PRD 95 (2017) 031501 Aguilar, Cardona, Ferreira, Papavassiliou, arXiv:1610.06158

Mitter, JMP, Strodthoff, PRD 91 (2015) 054035

Pelaez, Tissier, Wschebor, PRD 92 (2015) 045012

Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016) 1

**lattice:** Oliveira, Kizilersü, Silva, Skullerud, Sternbeck, Williams, APP Suppl. 9 (2016) 363



### More generally: X-assisted Y

X=fRG, DSE, nPI, lattice, exp. data Y=fRG, DSE, nPI

Example: use

(a) 2+1 fRG-assisted gluon

(b) optional: two-flavour fRG quark-gluon vertex

### More generally: X-assisted Y

X=fRG, DSE, nPI, lattice, exp. data Y=fRG, DSE, nPI

**Example: use** 

(a) 2+1 fRG-assisted gluon

(b) optional: two-flavour fRG quark-gluon vertex



### More generally: X-assisted Y

X=fRG, DSE, nPI, lattice, exp. data Y=fRG, DSE, nPI

**Example: use** 

(a) 2+1 fRG-assisted gluon

(b) optional: two-flavour fRG quark-gluon vertex



### More generally: X-assisted Y

X=fRG, DSE, nPI, lattice, exp. data Y=fRG, DSE, nPI



**Example: use** 

(a) 2+1 fRG-assisted gluon

(b) optional: two-flavour fRG quark-gluon vertex



Further example, e.g. lattice-assisted 2+1 flavour DSE Aguilar et al, EPC 80 (2020) 2, 154

### More generally: X-assisted Y

X=fRG, DSE, nPI, lattice, exp. data Y=fRG, DSE, nPI



Example: use

(a) 2+1 fRG-assisted gluon

(b) optional: two-flavour fRG quark-gluon vertex



in 2+1 flavour DSE quark gap eq.



74



Example: use

(a) 2+1 fRG-assisted gluon

(b) optional: two-flavour fRG quark-gluon vertex











Example: use

(a) 2+1 fRG-assisted gluon

(b) optional: two-flavour fRG quark-gluon vertex







## **Correlation functions at finite temperature**

# **YM-theory: gluonic correlation functions**



Aiming at apparent convergence



# **YM-theory: gluonic correlation functions**



Aiming at apparent convergence



Cyrol, Fister, Mitter, JMP, Strodthoff, PRD 97 (2018) 5, 054015



## **Euclidean gluon propagator at finite T**

### chromo-magnetic propagator



**Fister, JMP, arXiv:1112.5440** 

Lattice: Maas, JMP, Smekal, Spielmann, PRD 85 (2012) 034037

CF model: Reinosa, Serreau, Tissier, Tresmontant, PRD 95 (2017) 045014

Aiming at apparent convergence





### **Euclidean gluon propagator at finite T**



### **Debye mass (chromo-electric)**

### chromo-electric propagator

Lattice: Silva, Oliveira, Bicudo, Cardoso, PRD89 (2014) 7, 074503

Cyrol, Fister, Mitter, JMP, Strodthoff, PRD 97 (2018) 5, 054015



### **Euclidean gluon propagator at finite T**



**Debye mass (chromo-electric)** 

 $\langle A_0 \rangle \neq 0$ 

### chromo-electric propagator

Lattice: Silva, Oliveira, Bicudo, Cardoso, PRD89 (2014) 7, 074503

Cyrol, Fister, Mitter, JMP, Strodthoff, PRD 97 (2018) 5, 054015



## Polyakov loop from functional approaches

$$\left(L[A_0] = \frac{1}{\mathbf{N}_{\mathbf{c}}} \mathbf{tr} \, \mathcal{P} \mathbf{e}^{\mathbf{i} \, \mathbf{g}} \int_{\mathbf{0}}^{\beta} \mathbf{A}_{\mathbf{0}}(\mathbf{x})\right)$$

### FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010



$$\left(L[A_0] = \frac{1}{\mathbf{N}_{\mathbf{c}}} \operatorname{tr} \mathcal{P} \mathbf{e}^{\mathbf{i} \mathbf{g}} \int_{\mathbf{0}}^{\beta} \mathbf{A}_{\mathbf{0}}(\mathbf{x})\right)$$



### FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010



$$\left(L[A_0] = \frac{1}{\mathbf{N}_{\mathbf{c}}} \operatorname{tr} \mathcal{P} \mathbf{e}^{\mathbf{i} \mathbf{g}} \int_{\mathbf{0}}^{\beta} \mathbf{A}_{\mathbf{0}}(\mathbf{x})\right)$$



### FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010



### $T_c/\sqrt{\sigma} = 0.658 \pm 0.023$

lattice :  $T_c/\sqrt{\sigma} = 0.646$ 

$$\left(L[A_0] = \frac{1}{\mathbf{N}_{\mathbf{c}}} \operatorname{tr} \mathcal{P} \mathbf{e}^{\mathbf{i} \mathbf{g}} \int_{\mathbf{0}}^{\beta} \mathbf{A}_{\mathbf{0}}(\mathbf{x})\right)$$



### FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010





### Flow equation for the Polyakov loop expectation value



Herbst, Luecker, JMP, arXiv:1510.03830

### quation for composite operators

JMP, AP 322 (2007) 2831

Igarashi, Itoh, Sonoda, PTP Suppl. 181 (2010) 1

Pagani, PRD 94 (2016) 045001





### Flow equation for the Polyakov loop expectation value



Parameterisation

$$\langle L[A_0]
angle = Z_L[ar{A},\phi]\cdot L[A_0]$$
 with  $\phi=(a_\mu,c,ar{c})$ 

Herbst, Luecker, JMP, arXiv:1510.03830

### quation for composite operators

JMP, AP 322 (2007) 2831

Igarashi, Itoh, Sonoda, PTP Suppl. 181 (2010) 1

Pagani, PRD 94 (2016) 045001




## Confinement

### Flow equation for the Polyakov loop expectation value



Parameterisation

$$\langle L[A_0]
angle = Z_L[ar{A},\phi]\cdot L[A_0]$$
 with  $\phi=(a_\mu,c,ar{c})$ 

Flow for Polyakov loop wave function

$$\partial_t Z_L[\bar{A}, \phi] = \operatorname{Flow}_{Z_L}[\bar{A}; Z_L, G_A, G_c, L[A_0]]$$

Herbst, Luecker, JMP, arXiv:1510.03830

### quation for composite operators

JMP, AP 322 (2007) 2831

Igarashi, Itoh, Sonoda, PTP Suppl. 181 (2010) 1

Pagani, PRD 94 (2016) 045001





## Confinement

### Flow equation for the Polyakov loop expectation value



Parameterisation

$$\langle L[A_0]
angle = Z_L[ar{A},\phi]\cdot L[A_0]$$
 with  $\phi=(a_\mu,c,ar{c})$ 

Flow for Polyakov loop wave function

$$\partial_t Z_L[\bar{A}, \phi] = \operatorname{Flow}_{Z_L}[\bar{A}; Z_L, G_A, G_c, L[A_0]]$$

Herbst, Luecker, JMP, arXiv:1510.03830

### quation for composite operators

JMP, AP 322 (2007) 2831

Igarashi, Itoh, Sonoda, PTP Suppl. 181 (2010) 1

Pagani, PRD 94 (2016) 045001







## **QCD** phase structure

## Locating the QCD phase boundary and the critical end point

## Three remarks on Functional Approaches for QCD

• off-shell representation of thermodynamic observables

e.g.  $\operatorname{Tr} \langle q(x) \bar{q}(x) \rangle$ 





pressure, trace anomaly, fluctuations, volume flucs., ...

'... and now for something completely different ...'

e.g. hadron resonances



## Three remarks on Functional Approaches for QCD

• off-shell representation of thermodynamic observables

e.g.  $\operatorname{Tr} \langle q(x) \bar{q}(x) \rangle$ 





pressure, trace anomaly, fluctuations, volume flucs., ...

### gauge fixing = parameterisation

### Consequences

I: simple correlations

'... and now for something completely different ...'

e.g. hadron resonances

## $\langle q(x_1)\cdots \bar{q}(x_{2n})A_{\mu}(y_1)\cdots A_{\mu}(y_m)h(z_1)\cdots h(z_l)\rangle$

II: Difficult access to some observables

'No free lunch theorem'



## Three remarks on Functional Approaches for QCD

• off-shell representation of thermodynamic observables

e.g.  $\operatorname{Tr} \langle q(x) \bar{q}(x) \rangle$ 





pressure, trace anomaly, fluctuations, volume flucs., ...

### gauge fixing = parameterisation

 $\langle q(x_1)\cdots \bar{q}(x_{2n})A_{\mu}(y_1)\cdots A_{\mu}(y_m)h(z_1)\cdots h(z_l)\rangle$ 

### Consequences

I: simple correlations

Your mean field is not my mean field'

 $\frac{\delta S_{\rm cl}[\phi]}{\delta \phi}\Big|_{\phi=\bar{\phi}} =$ = 0

'... and now for something completely different ...'

e.g. hadron resonances

### **II: Difficult access to some observables**

'No free lunch theorem'



full quantum equation of motion



## **Correlation functions at finite density from functional QCD** To QCD or not to QCD....a minimal point of view

$$\partial_t \left\langle q(x)\bar{q}(y) \right\rangle^{-1}(\mu_B) = \operatorname{Loop}\left[ \left\langle q(x)\bar{q}(y) \right\rangle(\mu_B), \ \left\langle q(x)A_\mu(y)\bar{q}(z) \right\rangle(\mu_B), \cdots; \ \mu_B \right]$$



'... and now for something completely different ...'

## • Self-consistent truncations to functional relations define analytic functions in $\mu_{ m B}$ , eg:





## Dalian, Beijing, Darmstadt, Heidelberg, Gießen

## Braun, Chen, Fu, Gao, Geissel, Huang, Lu, Ihssen, Pawlowski, Rennecke, Sattler, Schallmo, Stoll, Tan, Töpfel, Turnwald, Wessely, Wen, Wink, Yin, Zheng, Zorbach







- **fRG:** Fu, JMP, Rennecke, PRD 101 (2020) 054032
- **DSE:** Gao, JMP, PLB 820 (2021) 136584
  - Gunkel, Fischer, PRD 104 (2021) 054022





Collect all possible information/structure for physics understanding & extrapolations



- **fRG:** Fu, JMP, Rennecke, PRD 101 (2020) 054032
- **DSE:** Gao, JMP, PLB 820 (2021) 136584
  - Gunkel, Fischer, PRD 104 (2021) 054022









- **fRG:** Fu, JMP, Rennecke, PRD 101 (2020) 054032
- **DSE:** Gao, JMP, PLB 820 (2021) 136584
  - Gunkel, Fischer, PRD 104 (2021) 054022









- fRG: Fu, JMP, Rennecke, PRD 101 (2020) 054032
- **DSE:** Gao, JMP, PLB 820 (2021) 136584
  - Gunkel, Fischer, PRD 104 (2021) 054022



**Extrapolations for Pheno** 

Requires a discussion of the

explicit & implicit assumptions







- fRG: Fu, JMP, Rennecke, PRD 101 (2020) 054032
- **DSE:** Gao, JMP, PLB 820 (2021) 136584

Gunkel, Fischer, PRD 104 (2021) 054022



**Extrapolations for Pheno** 

Requires a discussion of the

explicit & implicit assumptions

Lattice extrapolations

Iow energy effective theories: QM, NJL, PQM, PNJL, ..., Holography



## Functional QCD: systematic error estimates & the LEGO<sup>®</sup> principle



Example: 4-quark scattering vertex







Ihssen, JMP, Sattler, Wink, in preparation







Braun, Leonhardt, Pospiech, PRD 101 (2020) 036004

### Dominance of scalar-pseudoscalar fluctuations

Pions & sigma mode







Braun, Leonhardt, Pospiech, PRD 101 (2020) 036004

**Full chiral dynamics** 

Fu, JMP, Rennecke, PRD 101 (2020) 054032 (fRG)

**Dominant chiral dynamics** Gunkel, Fischer, PRD 104 (2021) 054022 (DSE)

**Full quark-gluon dynamics** 

Gao, JMP, PLB 820 (2021) 136584 (DSE)

**Dominance of scalar-pseudoscalar fluctuations** 

Pions & sigma mode











### Pisarski, Rennecke, PRL 127 (2021) 152302

### see talk of Fabian Rennecke

T=114 MeV &  $\mu_B$ =630 MeV



Fu, JMP, Pisarski, Rennecke, Wen, Yin, in prep

T=160 MeV &  $\mu_B$  =0 MeV

### **Pion spectral functions**









### Pisarski, Rennecke, PRL 127 (2021) 152302

### see talk of Fabian Rennecke

T=114 MeV &  $\mu_B$ =630 MeV





Fu, JMP, Pisarski, Rennecke, Wen, Yin, in prep

Moat regime is not captured quantitatively

### **Pion spectral functions**









Emergent diquarks

Braun, Leonhardt, Pospiech, PRD 101 (2020) 036004

**Regime of quantitative reliability** of current best truncation

### **Estimate**







Emergent diquarks

Braun, Leonhardt, Pospiech, PRD 101 (2020) 036004

**Regime of quantitative reliability** of current best truncation

### **Estimate**

Emergent diquarks are not captured by extrapolations







Braun, Leonhardt, Pospiech, PRD 101 (2020) 036004



**Regime of quantitative reliability** of current best truncation

### **Estimate**



Eichmann, Fischer, Welzbacher, PRD 93 (2016) 034013













Xiaofeng Luo

Most functional computations (LEFT or QCD) have not been set-up for CEP-predictions!

## **Location of CP : Theoretical Prediction**

Preliminary collection from Lattice, DSE, FRG and PNJL (2004-2020)

Large uncertainties for the estimation of CP location.

The 10<sup>th</sup> RHIC BES theory and experiment online seminar, Oct. 6<sup>th</sup>, 2020

### **RHIC-BES Seminar Oct. 6th 2020, Xiaofeng Luo**

9

## **Disclaimer**

Lack of predictive power for CEP-predictions is no quality measure!









Most functional computations (LEFT or QCD) have not been set-up for CEP-predictions!

## **Location of CP : Theoretical Prediction**

Preliminary collection from Lattice, DSE, FRG and PNJL (2004-2020)

The 10<sup>th</sup> RHIC BES theory and experiment online seminar, Oct. 6<sup>th</sup>, 2020

### **RHIC-BES Seminar Oct. 6th 2020, Xiaofeng Luo**

## **Disclaimer**

Lack of predictive power for CEP-predictions is no quality measure!









Xiaofeng Luo

### **Remove CEP-predictions**

(i) 'old' CEPs: lattice, Functional QCD approaches, LEFTS (updated computations available)

(ii) LEFTs & Functional Results (qualitative approximations) that miss lattice benchmarks at  $\mu_{\rm B}$  =0

(iii) LEFTs with CEPs at large density (missing quark-gluon back reaction)

### **Location of CP : Theoretical Prediction**

Preliminary collection from Lattice, DSE, FRG and PNJL (2004-2020)

The 10<sup>th</sup> RHIC BES theory and experiment online seminar, Oct. 6<sup>th</sup>, 2020

**RHIC-BES Seminar Oct. 6th 2020, Xiaofeng Luo** 

9







The 10<sup>th</sup> RHIC BES theory and experiment online seminar, Oct. 6<sup>th</sup>, 2020 Xiaofeng Luo

### **Remove CEP-predictions**

(i) 'old' CEPs: lattice, Functional QCD approaches, LEFTS (updated computations available)

(ii) LEFTs & Functional Results (qualitative approximations) that miss lattice benchmarks at  $\mu_{\rm B}$  =0

(iii) LEFTs with CEPs at large density (missing quark-gluon back reaction)

### **Location of CP : Theoretical Prediction**



**RHIC-BES Seminar Oct. 6th 2020, Xiaofeng Luo** 

9







### **Remove CEP-predictions**

(i) 'old' CEPs: lattice, Functional QCD approaches, LEFTS (updated computations available)

(ii) LEFTs & Functional Results (qualitative approximations) that miss lattice benchmarks at  $\mu_{\rm B}$  =0

(iii) LEFTs with CEPs at large density (missing quark-gluon back reaction)

### **Location of CP : Theoretical Prediction**



**RHIC-BES Seminar Oct. 6th 2020, Xiaofeng Luo** 







### **Remove CEP-predictions**

(i) 'old' CEPs: lattice, Functional QCD approaches, LEFTS (updated computations available)

(ii) LEFTs & Functional Results (qualitative approximations) that miss lattice benchmarks at  $\mu_{\rm B}$  =0

(iii) LEFTs with CEPs at large density (missing quark-gluon back reaction)

### **Location of CP : Theoretical Prediction**



**RHIC-BES Seminar Oct. 6th 2020, Xiaofeng Luo** 



### Scenario I





## Scenario II



### Scenario III

### Scaling and/or new phases







Soft modes in hot QCD matter: Braun, Chen, Fu, Gao, Huang, Ihssen, JMP, Rennecke, Sattler, Tan, Wen, Yin, arXiv:2310.19853







### Scenario II







## Scenario II



see talk of Wei-jie Fu



Fu, Luo, JMP, Rennecke, Wen, Yin, arXiv:2308.15508







## The unreasonable effectiveness of low energy effective theories

# or the LEGO<sup>®</sup> principle at work

## The LEGO<sup>®</sup> principle at work





The unreasonable effectiveness of low energy effective theories



**99** 



## On the unreasonable effectiveness of low energy effective theories



### Sequential decoupling of gluon, quark, sigma, pion fluctuations





Braun, Fister, Haas, JMP, Rennecke, PRD 94 (2016) 034016

Based on:

Rennecke, PRD 92 (2015) 076012

## On the unreasonable effectiveness of low energy effective theories







Based on:

Braun, Fister, Haas, JMP, Rennecke, PRD 94 (2016) 034016

Rennecke, PRD 92 (2015) 076012


### On the unreasonable effectiveness of low energy effective theories







Based on:

Braun, Fister, Haas, JMP, Rennecke, PRD 94 (2016) 034016

Rennecke, PRD 92 (2015) 076012



## On the unreasonable effectiveness of low energy effective theories







## **Chiral condensates**

101



### renormalised condensate

lattice: S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, JHEP 09, 073 (2010)

### **DSE: quark condensates**

### See also

Fischer, Luecker, PLB 718 (2013) 1036 Fischer, Luecker, Welzbacher, PRD 90 (2014) 034022 Isserstedt, Buballa, Fischer, Gunkel, PRD 100 (2019) 074011

$$\Delta_{l,R}(T,\mu_B) \simeq \Delta_l(T,\mu_B) - \Delta_l(0,0)$$

$$\Delta_q(T,\mu_B) = \frac{T}{\mathcal{V}} m_q^0 \int_x \langle \bar{q}(x)q(x) \rangle$$

**fRG:** Fu, JMP, Rennecke, PRD 101 (2020) 054032 **DSE:** Gao, JMP, PLB 820 (2021) 136584



## **Chiral condensates**



### renormalised condensate

lattice: S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, JHEP 09, 073 (2010)



### reduced condensate

$$\Delta_{l,R}(T,\mu_B) \simeq \Delta_l(T,\mu_B) - \Delta_l(0,0)$$

$$\Delta_q(T,\mu_B) = \frac{T}{\mathcal{V}} m_q^0 \int_x \langle \bar{q}(x)q(x) \rangle$$

$$\Delta_{l,s}(T,\mu_B) = \frac{\Delta_l(T,\mu_B) - \left(\frac{m_l^0}{m_s^0}\right)^2 \Delta_s(T,\mu_B)}{\Delta_l(0,0) - \left(\frac{m_l^0}{m_s^0}\right)^2 \Delta_s(0,0)}$$

**fRG:** Fu, JMP, Rennecke, PRD 101 (2020) 054032 **DSE:** Gao, JMP, PLB 820 (2021) 136584

101

300



## **QCD-assisted low energy effective theory**



### **Direct QCD input**





## **QCD-assisted low energy effective theory**



Low energy quantum, thermal & density fluctuations via fRG (QCD-assisted PQM model)

### **Direct QCD input**



Fu, Luo, JMP, Rennecke, Wen, Yin, arXiv:2308.15508



## **QCD-assisted low energy effective theory**





### **Direct QCD input**



### Low energy quantum, thermal & density fluctuations via fRG (QCD-assisted PQM model)

### Benchmarks with lattice and fQCD at vanishing density and fQCD at finite density



Fu, Luo, JMP, Rennecke, Wen, Yin, arXiv:2308.15508



## **QCD-assisted heavy ion physics: compilation of functional QCD results**

## Thermodynamics & spectral properties

## Sneak preview on the QCD moat









Fu, JMP, Rennecke, PRD 101 (2020) 054032

## iminary

### Energy

## Sneak preview on the QCD moat



### **Pion correlation function**





## Sneak preview on the QCD moat



0

0



### **Pion correlation function**



105

### Fu, JMP, Pisarski, Rennecke, Wen, Shi Yin, in preparation



## **EoS with the minimal DSE**



Speed of sound





**Pressure over energy** 



Yi Lu, Gao, Liu, JMP, 2310.18383 (accepted with PRD)



## Chiral dynamics & soft modes

## To be (critical) or not (to be)





Braun, Chen, Fu, Gao, Huang, Ihssen, JMP, Rennecke, Sattler, Tan, Wen, Yin, 2310.19853

### **Chiral transition temperature**





Braun, Fu, JMP, Rennecke, Rosenblüh, Yin, PRD 102 (2020) 056010 Gao, JMP, PRD 105 (2022) 094020



# To be (critical) or not (to be)



**Order parameter potential & scaling** 



(Critical) exponent: 
$$rac{1}{\delta}=rac{1}{n-1}$$



Braun, Chen, Fu, Gao, Huang, Ihssen, JMP, Rennecke, Sattler, Tan, Wen, Yin, 2310.19853

# **Chiral transition temperature**

Braun, Fu, JMP, Rennecke, Rosenblüh, Yin, PRD 102 (2020) 056010 Gao, JMP, PRD 105 (2022) 094020







$$\Delta_l(m_\pi) \propto m_\pi^{2/\delta} \left[ 1 + a_m m_\pi^{2\theta_H} + \cdots \right]$$
 Braun, C



QM: Chen, Wen, WF, PRD 104 (2021) 054009

Chen, Fu, Gao, Huang, Ihssen, JMP, Rennecke, Sattler, Tan, Wen, Yin, 2310.19853



$$\Delta_l(m_\pi) \propto m_\pi^{2/\delta} ig[ 1 + a_m m_\pi^{2 heta_H} + \cdots ig]$$
Braun, C



'chiral scaling' Trivial  $\Delta_l^{1+\delta}$  scaling

QM: Chen, Wen, WF, PRD 104 (2021) 054009

Chen, Fu, Gao, Huang, Ihssen, JMP, Rennecke, Sattler, Tan, Wen, Yin, 2310.19853











'chiral scaling'

Trivial  $\Delta_I^{1+\delta}$  scaling

fQCD collaboration, in preparation QM: Chen, Wen, WF, PRD 104 (2021) 054009

**Chiral dynamics & quasi-massless modes** 

'Non-critical chiral scaling' Far away from the critical regime for  $m_{\pi} \gtrsim 1 \,\mathrm{MeV}$  $\Delta_l(T,H) \approx \Delta_{l,\chi}(0) \left( c_0 + c_{\frac{1}{5}} H^{\frac{1}{5}} + c_{\frac{1}{3}} H^{\frac{1}{3}} + c_1 H \right)$  $\Delta_l^6$  $V_{\chi}(\Delta_l) \propto$  $\Delta_l^2$  $\Delta_l^4$ 



## Full order parameter potential

**Measure: correlation length** 





QCD: fQCD collaboration, in preparation



# **Dynamics and the size of the critical regime**

Transport with fRG spectral functions & effective potential



Blum, Jiang, Nahrgang, JMP, Rennecke, Wink, NPA 982

QM: Roth, Schweitzer, Rieke, von Smekal, PRD 105 (2022)



### Showcases in linear sigma models

### **Dynamical universality**







# Fluctuations of conserved charges: Ripples of the critical end point or the LEGO<sup>®</sup> principle at work

### Baryon number fluctuations in the phase structure







### Baryon number fluctuations in the phase structure







### Variations of the CEP



### Fu, Luo, JMP, Rennecke, Wen, Yin, arXiv:2308.15508



**Canonical corrections via subensemble acceptance method** 

fixing the subensemble volume

subensemble volume

system volume

 $V_1 = \alpha V$ 



Vovchenko, Savchuk, Poberezhnyuk, Gorenstein, Koch, PLB 811, 135868 (2020)



**Canonical corrections via subensemble acceptance method** 

fixing the subensemble volume

subensemble volume

system volume

 $V_1 = \alpha V$ 



### qualitative adjustment

$$\alpha(\bar{s}) = a\left(1 - \sqrt{\bar{s}}\right)\theta\left(1 - \sqrt{\bar{s}}\right)\theta\left$$

$$a = 0.33 \qquad \qquad \sqrt{\bar{s}} = \frac{1}{1}$$

Vovchenko, Savchuk, Poberezhnyuk, Gorenstein, Koch, PLB 811, 135868 (2020)

 $(-\bar{s})$ 

 $/s_{\rm NN}$  $1.9\,\mathrm{GeV}$ 



fixing the subensemble volume

subensemble volume

system volume

 $V_1 = \alpha V$ 



### qualitative adjustment

$$\alpha(\bar{s}) = a\left(1 - \sqrt{\bar{s}}\right)\theta\left(1 - \bar{s}\right)$$

$$a = 0.33 \qquad \qquad \sqrt{\bar{s}} = \frac{1}{1}$$

### **Canonical corrections via subensemble acceptance method**

Vovchenko, Savchuk, Poberezhnyuk, Gorenstein, Koch, PLB 811, 135868 (2020)



### baryon & proton number fluctuations



### **Reconstructing the CEP**











### **Reconstructing the CEP**









Unfolding the high density regime with new phases & physics

Great opportunity for a combined high precision analysis of high density QCD (Exp. data + lattice QCD + functional QCD)

### **Reconstructing the CEP**







# Summary

### (I) Functional Renormalisation Group for QCD

- The renormalisation group is a one-loop exact functional approach
  - consistent RG-scaling
  - systematic expansion schemes & error control
  - compatibility with other functional approaches
- Resonances via dynamical hadronisation
  - hadrons as exchange fields of quarks scattering vertices
  - BSE wave function quark-hadron vertex
  - Stable dynamical emergence of low energy effective theories
- Quark-gluon-meson correlation functions
  - Self-consistent results: all correlation functions computed are fed back
  - **Dynamical chiral symmetry breaking & confinement**
  - Quantitative agreement with lattice results



### (II) Functional QCD and the QCD phase structure

- QCD at finite temperature and density
  - all available benchmarks in the vacuum passed
  - confinement-deconfinement phase transition
  - compatibility with other functional approaches
- Locating the QCD phase structure and the critical end point
  - Quantitative predictions for  $\mu_B/T$
  - Estimate for the location of the CEF
  - Diquark domination for  $\mu_B/T\gtrsim 8$
- Fluctuations of conserved charges: Ripples of the critical end point
  - Quantitative agreement of the fluctuations of conserved charges with lattice results Qualitative accounting for canonical effects with the sub-ensemble method
  - QCD-assisted low energy effective theory with the phase structure of QCD Remarkable compatibility with the new STAR data (baryon vs proton fluctuations,

  - finite volume effects, ...)

$$\lesssim 4$$
, estimates for  $\mu_B/T \lesssim 800 \text{MeV}$   
P:  $(\mu_B, T)_{\text{CEP}} \sim (600 - 650, 105 - 115) \text{ MeV}$ 





