IRIS-HEP 200Gbps challenge

April 2024

Brian Bockelman

DOMA in a nutshell

- Recall the IRIS-HEP Strategic plan outlined four 'computing gaps' between now and the HL-LHC:
 - G1: Raw Resource Requirements
 - G2: Scalability of the Distributed Cyberinfrastructure
 - ► G3: Analysis at the HL-LHC Scale
 - G4: Sustainability
- Given the "D" in DOMA is "Data", the area is relevant to all four gaps. However, the team is focusing on (G2), (G3), and (G4).

Scalability and Sustainability

Scalability of the Distributed Cyberinfrastructure:

- Can we turn "raw resources" into "effective capacity" at the HL-LHC scale?
- If you have the CPUs in the US and the disk at CERN, do you have the CI to turn the data into science?
- Are the networks, middleware, and services ready for the raw scale of the envisioned HL-LHC workflows?
- Sustainability:
 - Can we afford to run and maintain the services in the CI?
 - DOMA's strategy is to commoditize parts that are not unique to our community and share the things that are.

Measuring Progress

- In the February 2020 review of IRIS-HEP, one recommendation we got was to setup a series of "grand challenges" to help focus effort to strategic items.
 - Goal: Have a sequence of quantifiable, increasingly realistic exercises that can be taken as a proxy for HL-LHC readiness.
- We defined the "Data Grand Challenge" which grew into the community's "WLCG Data Challenge".

REARLESS

SCIENCE

 In Fall 2021, DC21 was executed – 10% scale of HL-LHC – and was a success.

Year	<u>% of HL-</u> LHC scale	<u>Flexible</u> (Gbps)
2021 🗹	10% 🔽	960 🗹
2024 🗹	25%	2,400
2026	50%	4,800
2028	100%	9,600

DC: Scale and Technology Readiness

- Around the same time as DC21, we'd been working within WLCG DOMA to introduce HTTP-TPC as a transport technology.
 - We felt it was ready.
- Problem: How do we show the community HTTP is ready?
 - Solution: DC21! Use the data challenges as a staging ground for showing new ideas.

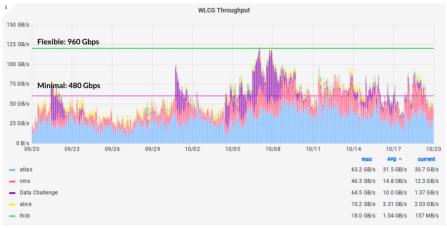


Figure 1 - Mock DC1 22/09/2021; Mock DC2 01/10/2021; Network Challenge (DC) 04-10/10/2021; Tape Challenge 11-19/10/2021.

Transfer scaling during DC21. Figure reproduced from https://zenodo.org/record/5767913

DC: Scale and Technology Readiness

- Happy ending!
- DC21 showed that HTTP was viable for replacing GridFTP at LHC scales.
- Community adoption & uptake was rapid.
 - By the end of 2021, nearly all bulk data transfers for LHC migrated to the new protocol.
- Not all technologies will have happy endings.
- Important piece is using 'grand challenges' to move the community forward.

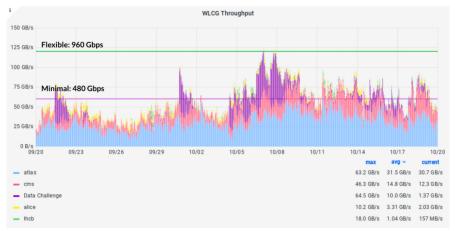
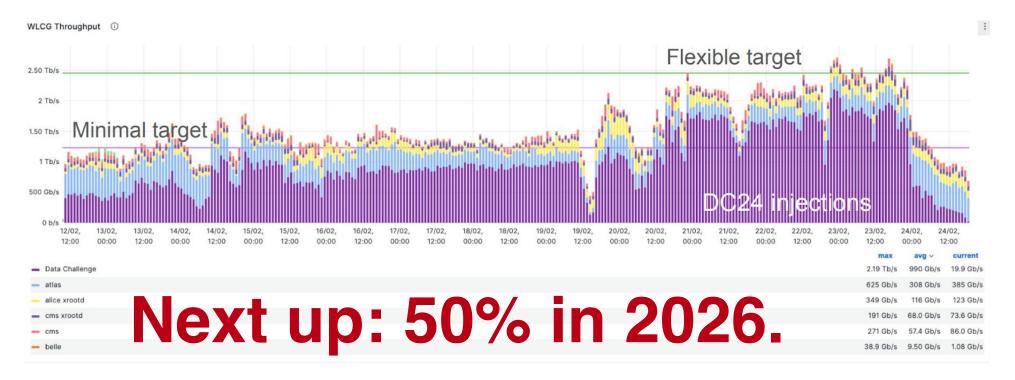


Figure 1 - Mock DC1 22/09/2021; Mock DC2 01/10/2021; Network Challenge (DC) 04-10/10/2021; Tape Challenge 11-19/10/2021.

Transfer scaling during DC21. Figure reproduced from https://zenodo.org/record/5767913

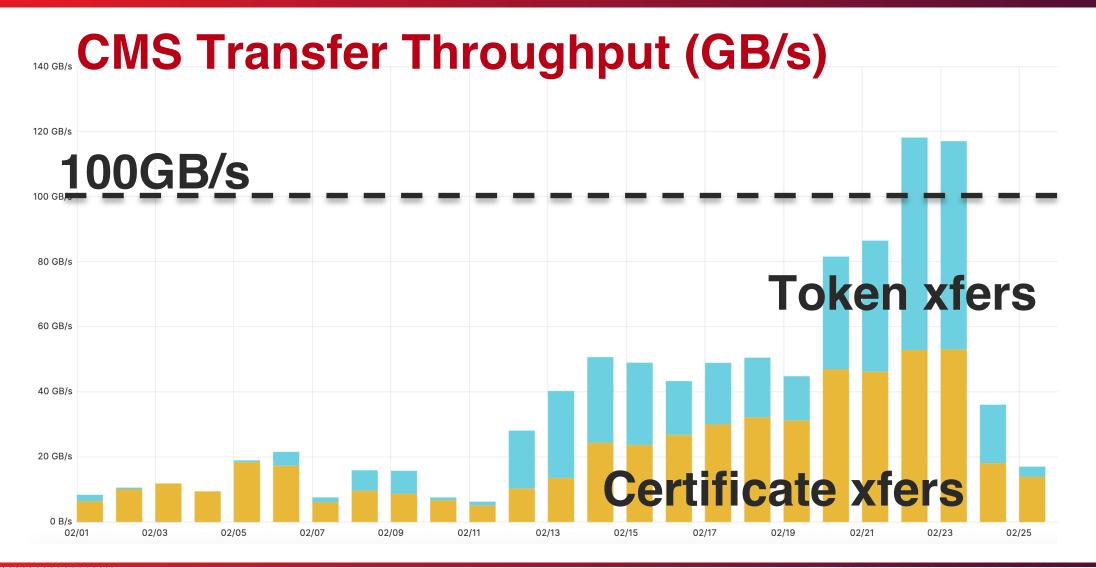


DC24: ¹/₄ of the way there

FEARLESS

SCIENCE

- The exercise was quite smooth. All scale targets were hit: demonstrated we are ready for 25% of HL-LHC scale.
- Community-wide summary is gathering inputs still (will be presented May 2024). Plenty of lessons learned from sites to middleware.


IRIS-HEP Technology in DC24

- For sustainability goal, IRIS-HEP work includes:
 - New authorization technology: Switching from X.509 'grid' authorization to industry-standard JWTs.
 - Integrating network management: Pulling ESNet's SENSE technology into the LHC stack, showing networks can be managed as part of the data management system.

Summary Plot

Highlight Numbers – Using tokens:

- >30PB moved
- 25 CMS sites
- On peak days, >50% by volume
- >1M xfers / day

Short version: it works

Grand Challenge as a Framework for Progress

- The "Grand Challenge" approach has been instrumental in focusing the community and the institute.
 - I feel it's helped close (G2) scalability of the distributed CI and (G4) sustainability "HL-LHC gaps".

Idea: Let's do the same thing for "analysis at HL-LHC scale"

The 200Gbps Challenge

- Observation: IRIS-HEP innovates in
 - <u>Facilities R&D</u> (how do we build better compute facilities for HL-LHC; SSL area).
 - Includes pathfinder facilities that can access ATLAS, CMS, or open data.
 - Analysis systems (bringing the Python-based analysis ecosystem in production).
 - Data delivery (effective delivery of events to compute).
- Idea (mid-March): Pull the three efforts together and show readiness at 25% of HL-LHC scale.
 - And present the results at the WLCG Workshop in May 2024 (7 weeks from the launch of the idea).

25% of what, exactly?

- We want to show significant, quantitative progress toward HL-LHC-scale analysis.
 - Like in DC21, use realistic proxies for HL-LHC.
- In DOMA, we were able to tap into a long history of facility planning and was able to get the community to agree to goals based on extrapolating from a decades-old system.
 - No such luck in analysis. <u>Very little agreement</u> on HL-LHC analysis models.
- We decided to put down our own axioms for the challenge:
 - 1. We believe a full-scale HL-LHC analysis requires high-data rates, reading 200TB in 30 minutes.
 - 2. We want to use the IRIS-HEP Data Analysis pipeline and SSL facilities.
- Longer-term, we're trying to socialize the need for the community to find common truths.

Why 200TB in 30 minutes?

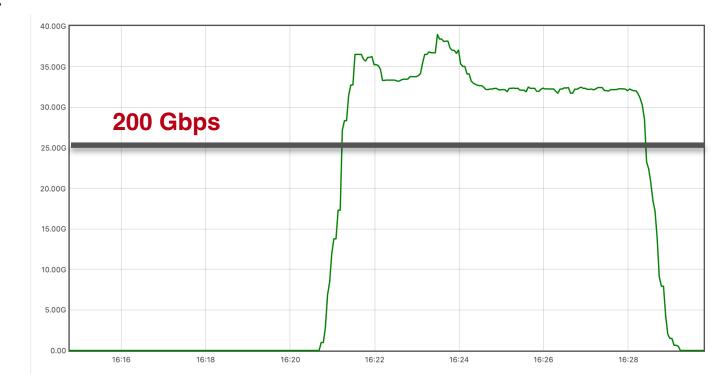
- Why select X TB in Y minutes? (X=200, Y=30)
- Experience shows we hit scaling limitations when we go up by an order of magnitude.
 - Running smoothly at 10X brings immediate benefit back to the 1X case.
 - If we fail to run smoothly at 10X then we gain valuable insight into the current limitations.
- This is ambitious-but-realistic for extrapolating today's facilities out 4 years.
 - There's nothing exotic or out of the reach of a typical US T2 in the 2028 timeframe.
- This is within reason by extrapolating today's parameters out to the HL-LHC event counts and sizes.
 - There's no first-principles derivation of the leading order. One also cannot argue that missing these targets will cause HL-LHC to fail.
 - But then again, the same is true for DC24.

FEARLESS

Points to the need for 'common truths' in the community around HL-LHC analysis

Derived Values – Example CMS 'napkin math'

- Start with 200TB read in 30 minutes. => ~900Gbps sustained.
- 25% scale => 200Gbps sustained. Hence, 200Gbps challenge.
- 200Gbps over 30 minutes => 45TB of data into the analysis process.
- Assume 25% of the data read from the CMS NanoAOD
 - => 180TB of NanoAOD is required to push 45TB of branches.
- At 2KB/event, 180TB of NanoAOD is 96B events.
- 96B events in 30 minutes => sustained 55MHz event rate.


Our sample analysis runs at 25KHz per core, meaning 2,200 cores are needed to sustain the 55MHz event rate.

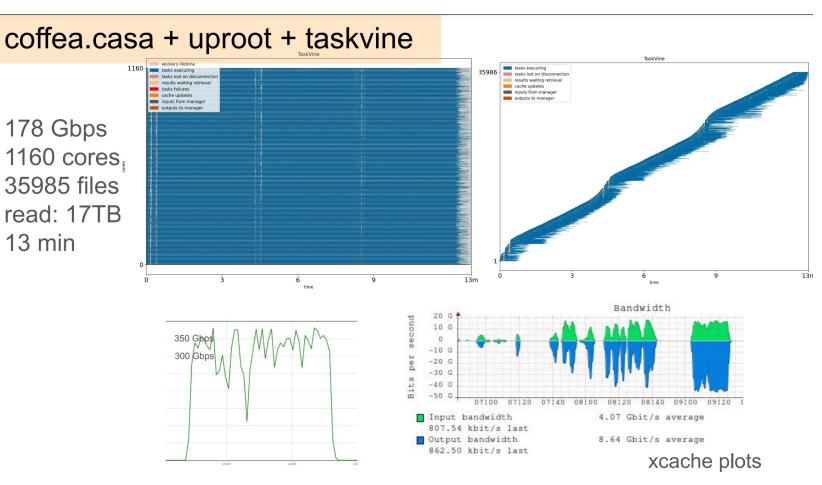
200Gbps Challenge

- Given we want realism (use real data, not Open Data), we split into two teams one working with ATLAS analysis data and approaches at Chicago, the other CMS at Nebraska.
 - The "napkin math" from prior slide was repeated for ATLAS
- Immense, focused activities across the institute.
- We are in week 6 of 7 for the exercise.
- Pieces are starting to come together.
 - Plot to the right shows hitting >200Gbps for a pure data movement test (no processing).

CMS Toolset

- For CMS, we decided:
 - Start with Run2 NANOAOD.
 - Process with Coffea 2024. Read data from XCache on the Coffea-Casa facility at the Nebraska Tier-2.
 - Start with the IDAP notebook from the AGC work last year, expand work out into the site HTCondor.
 - Dask tasks processed in TaskVine & Dask.
 - Compute values from the events read in; accumulate into histograms. "Direct from NanoAOD" style analysis.
- Notes on realism:
 - Real XCache setup. Token-based auth using the IAM service at CERN.
 - LZMA decompression dominates analysis time (~70%). To hit our target 25KHz-per-core processing rate, we recompressed the NANOAOD using ZSTD. About 20% larger than the original dataset, ~2.5x faster.
 - N.b.: our strong opinion is CMS needs to make this change.
 - We scale-out to HTCondor but, for these tests, pre-create the workers.

200Gbps Challenge

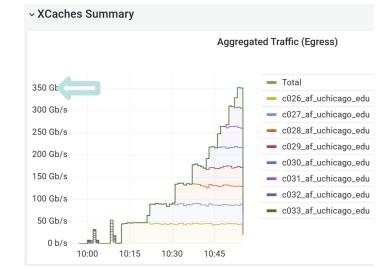

- As of last Friday, the CMS team was able to hit 178Gbps in processing data via uproot.
 - Over the weekend, test runs on a larger core count peaked at 202Gbps.
- Current obstacles:
 - With the full Coffea 2024 notebook, we see unexplained spikes in memory usage. Kills workers and causes processing "tails" (or stuck workflows).
 - Current tests hit targets using Uproot and reading via Python *but* strip out significant parts of the realism, making the work less interesting.
 - This week we've been bisecting the problem – adding back in the "real physics" code.

How far will we get by next

SCIENCE

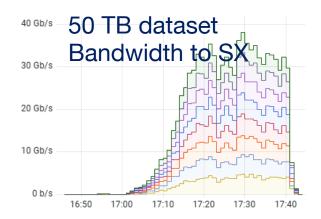
FEARLESS

Slide shown last Friday by Ben Tovar


morgridge.org

MORGRIDGE INSTITUTE FOR RESEARCH

ATLAS – ServiceX Path


- Use ServiceX to skim PHYSLITE
 - 200 TB goal of internal Run 2 data + mc
 - All datasets are starting from the Midwest Tier 2 facility
 - Reading 25% of the data
- Internal Bandwidth Should Support 200 Gbps
- Running on 50 TB dataset with 64K files
 - Stress k8s, S3 storage of output SX fragments
 - Stable at ~40 Gbps, unstable at higher speeds
- Running on the output of ServiceX
 - 200 Dask workers works well
 - 1000 workers causes intermittent failures in S3
 - No backoff/retry in software
- 1 TB dataset in 3 minutes no problems!

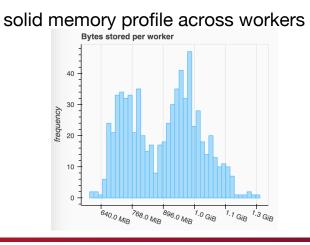
Internal UChicago AF Bandwidth

Where will we get by the workshop?

- Aiming for straight up 200 Gbps test
- Using SX for what it is good for – a prior physics motivated skim

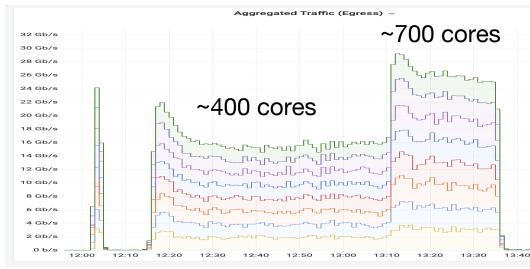
morgridge.org

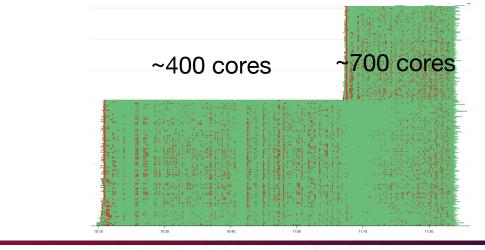
MORGRIDGE INSTITUTE FOR RESEARCH


ATLAS – uproot, dask-awkward, coffea 2024

- Probe new kind of workflow
 - process PHYSLITE without intermediate steps
 - do everything "on the fly"
 - nominal setup uses coffea 2024, dask-awkward, uproot
 - same input / task as ServiceX setup
- Lots of lessons learned already, many ongoing investigations
 - scaled Dask up to around 2k cores

SCIENCE


- throughput up to 55 Gbps so far
- work ongoing to go beyond


REARLESS

morgridge.org

Test run with 65k files, 50 TB of data

Sustainability - Sharing

- A key component of the analysis facilities is XRootD.
 - IRIS-HEP funds effort toward making XRootD better.
- In fact, XRootD shows up several places:
 - Reference platform for HTTP transfers
 - Foundation of CERN's EOS & CTA products (which manages ~1EB of data)
 - Used widely in other HEP experiments to deliver data.
 - Base of LSST's "QServ" distributed database.
 - Transfer server for the Pelican Platform, which is the base of OSDF (used by NCAR, IceCube, LIGO, NRAO).
- At the heart of 5 different NSF Major Facilities.

Investments in IRIS-HEP for analysis have impact across the LHC, HEP, and wider communities.

Preparing for the HL-LHC

- DOMA is focusing on 3 HL-LHC "computing gaps".
 - Demonstrated ability to move R&D into production in IRIS-HEP phase 1.
 - Reloaded with a new set of projects for phase 2.
- We have found the "grand challenge" approach to be a useful framing device for focusing effort.
 - A series of increasingly-complex, cumulative exercises towards a common, quantitative goal.
 - This is in addition to the "day to day" effort of bringing projects to fruition.
- Grand Challenges can be both scale and technology readiness.
 - Here, we're leaning in technology readiness more.
- We're in the middle of an intensive, time-limited exercise to show a vision of analysis at 200Gbps.
 - ~80% of the way through, it's been a resounding success in finding weaknesses in the integration between parts of the institute.
 - Would be difficult to execute such a broad exercise outside an institute-like entity.
 - Let's see if we hit our quantitative goals as well!

