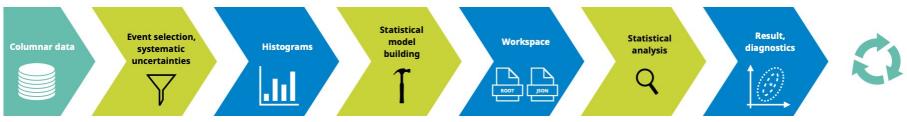
200 Gbps Analysis Challenge

Brian Bockelman (Morgridge Institute) Alexander Held (University of Wisconsin–Madison) Oksana Shadura (University Nebraska–Lincoln)

IRIS-HEP Steering Board Meeting #21

https://indico.cern.ch/event/1388604/


This work was supported by the U.S. National Science Foundation (NSF) cooperative agreements OAC-1836650 and PHY-2323298 (IRIS-HEP).

Analysis Grand Challenge (AGC):

execute series of increasingly realistic exercises toward HL-LHC

The AGC is about executing an analysis to test workflows designed for the HL-LHC. This includes:

- columnar data extraction from large datasets,
- **data processing** (event filtering, construction of observables, evaluation of systematic uncertainties) into histograms,
- statistical model construction and statistical inference,
- relevant visualizations for these steps

AGC: some previous work (1)

The AGC project started properly in the autumn of 2021

- Physics task definition (multiple versions)
 - Capturing physics analysis requirements matching practical needs of physicists
 - Using CMS Open Data (reformatted to 2 TB of NanoAODs)
- IRIS-HEP AGC reference pipeline implementation
 - Analysis implementation based on IRIS-HEP stack of tools
 - Connecting many projects and developers
 - Cycle: iterating with experts and improving implementation

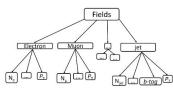
AGC: some previous work (2)

- Developed website as central resource: <u>https://agc.readthedocs.io/en/latest/</u>
 - Work based on IRIS-HEP fellow project AGC hosted and benefited from many great IRIS-HEP fellows

launch binder DOI 10.5281/zenodo.833890

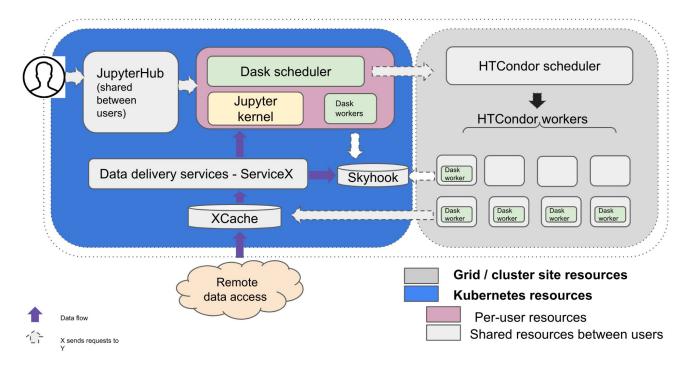
Analysis task details to allow for re-implementations

$tar{t}$ Analysis Background


The section covers the different components of the $t\bar{t}$ analysis using 2015 CMS Open Data (see AGC Analysis Task Versions section for more information). Here is an overview of what is covered in this page:

- 1. Brief description of the input data.
- 2. Event selection criteria and description of the signal event signature.
- 3. Event weighting.
- 4. Method for reconstructing the top mass
- 5. Statistical model building and fitting
- 6. Machine learning component in which jets are assigned to parent partons.

1. Input

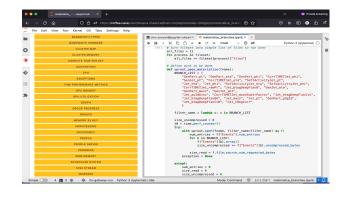

Input data is five sets of ROOT -files. Each set is produced in MC simulation and represents a partial interaction channel, one of five: ttbar-channel, single top s-channel, single top t-channel, single top tW-channel, Wjets-channel. The ROOT -file structure can be represented as a schematic:

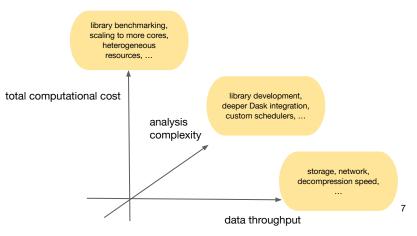
4

Analysis Grand Challenge (AGC): preparing next generation of Analysis Facilities

Coffea-casa Analysis Facility is providing **AGC execution environment** to explore analysis workflows at scale

IRIS-HEP v2: yearly benchmarking exercises


- 2024 200 Gbps Challenge
- End of 2024 Test analysis pipeline at scale with 30 simultaneous users
- 2025-2028 benchmark iterative scaling to HL-LHC needs with AGC


r 🖡	Timeline	Fraction of HL-LHC dataset processed in 1h
	2025	20% (40 TB)
	2026	50% (100 TB)
	2027	75 % (150 TB)
	2028	100% (200 TB)

getting ready for HL-LHC

The 200 Gbps setup

- Simplified analysis setup compared to what is done in AGC
 - Analysis "straight from NanoAOD / PHYSLITE" with all required computations on-the-fly
 - Goal to gradually add back functionality to match AGC
- Limited agreement in the broader field about how HL-LHC analysis will look like
 - Therefore: factorize challenges wherever possible -> project focused on data throughput

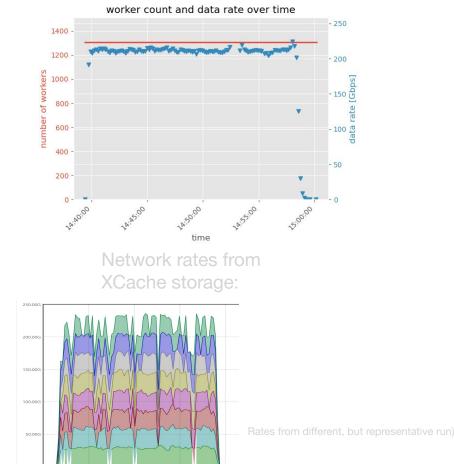
Defining the task

- "HL-LHC scale": process 25% of 180 TB dataset in 30 min
 This requires 200 Gbps
 For a 2 kB event size -> 90 B events, analyze at 50 MHz
 With 25 kHz / core -> need 2000 cores (12.5 MB/s per core)
- Two setups: ATLAS (at UChicago) and CMS (at UNL)
 - CMS: analyze Run-3 NanoAOD
 - ATLAS: analyze Run-2 PHYSLITE
- Very similar task between both setups, but **important differences** when comparing
 - Smaller per-event size in NanoAOD, (currently) different default compression algorithms, different object types
 - Different production facilities

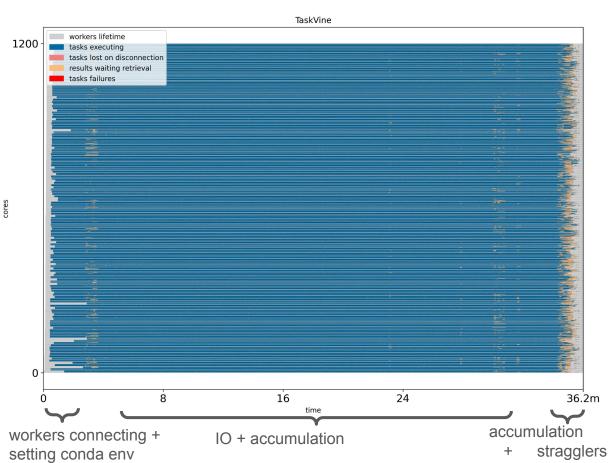
The 200 Gbps NanoAOD setup

<u>Uproot + Coffea</u> notebooks <u>https://github.com/iris-hep/idap-200gbps</u> and using <u>CMS Run2 NanoAOD (~100TB)</u>

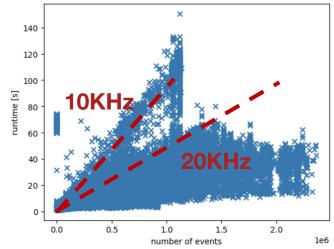
- Read data from XCache on the Coffea-Casa facility at the Nebraska Tier-2 (running in Kubernetes).
- Expand scale out into the site HTCondor and Kubernetes cluster.
- Tasks processed in TaskVine & Dask backends (dask-jobqueue vs dask-gateway).


Notes on realism:

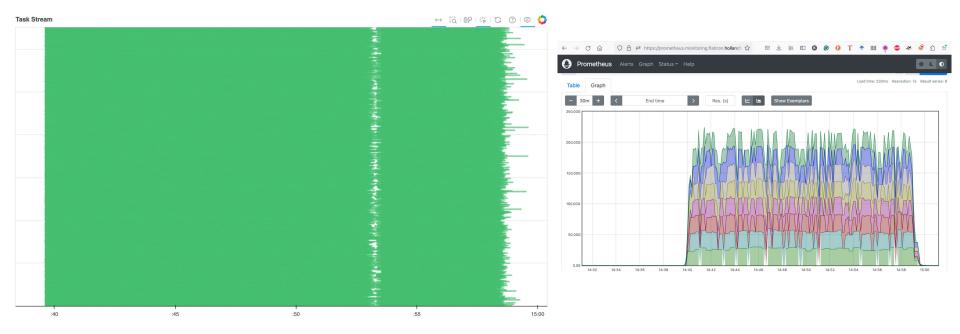
- Real XCache setup (works now in production at facility). Token-based auth using the IAM service at CERN.
- LZMA decompression dominates analysis time (~70%). To hit our target 25KHz-per-core processing rate, we recompressed the NANOAOD using ZSTD. About 20% larger than the original dataset, ~2.5x faster.
- We scale-out to HTCondor with pre-created workers, no autoscaling.


Uproot results, NanoAOD

From the statistics in the notebook:


- Data read (compressed): 58.33TB
- Average data rate: 221 Gbps
- Peak data rate: 240 Gbps
- Processed 40,276,003,047 events total
- Files processed: 63,762 (17 failed)

1200 cores across 150 8-core workers

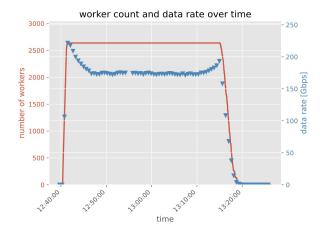


Runtime vs # Events as seen by xcache

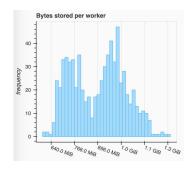
11

Dask task stream and xcache stats over the same run

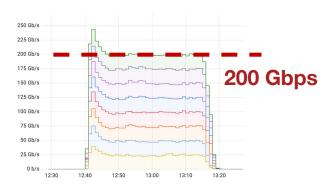
More results coming soon for upcoming CHEP 2024 conference


The 200 Gbps PHYSLITE setup

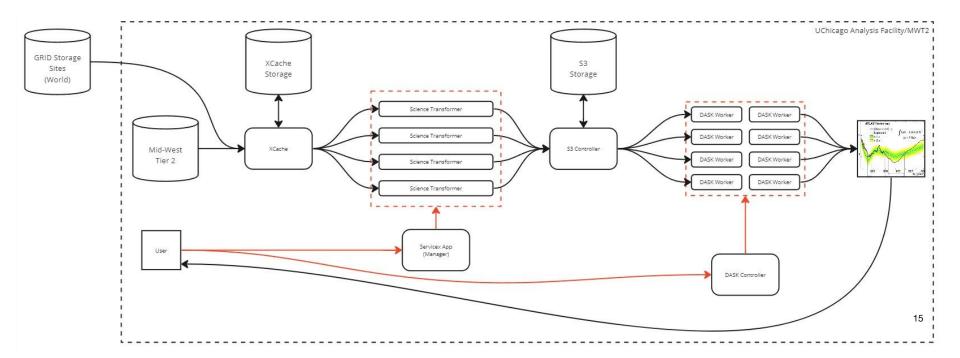
Uproot + Coffea notebooks https://github.com/iris-hep/idap-200gbps-atlas and using PHYSLITE (~190TB)


- At UChicago, also processed ATLAS PHYSLITE files directly in Python.
- 218k files, 190TB data, 23B events, ~8kHz/core
- Goal was using coffea 2024, dask-awkward, uproot; ended up using direct processing in uproot. Highlights:
 - Scaled Dask up to around 2.5k cores
 - 200Gbps throughput sustained in network monitoring; slightly less in 'effective bytes' into Dask.

Biggest challenge has been understanding memory usage; significant difference between "uproot only" and the full Coffea 2024 (the same situation was observed at CMS setup).

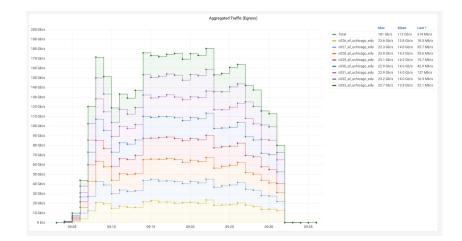

Scaling to HL-LHC: 200 Gbps PHYSLITE setup

memory profile across workers


Network monitoring

More results coming soon for upcoming CHEP 2024 conference

Using ServiceX: data flow


- Two-stage process, various unique features and performance-relevant aspects to consider
 - e.g. data written out to S3 must be compressed (can be CPU-intensive)

ServiceX Results

Using <u>ServiceX</u> data extraction and delivery delivery service as part of pipeline:

- To reduce the overhead of small datasets, we ran on a subset that consisted of the bulk of the data.
- Highlight run:
 - 4 Datasets
 - 146TB total
 - 19,074,862,754 Events
 - 170Gbps
 - Limited to 1,000 pods.
 - Time: 32:28
 - Event Rate: 9,787 kHz

morgridge.org

(Some of the) lessons learned

- Very successful exercise format: huge amount of progress and activity within 7 weeks
- Started slightly too big in scope with more complex task graph using coffea 2024
 - Faced some challenges with memory use and scaling to all available resources: following up to improve this now
 - Instead went back to a simpler uproot-based setup for this challenge
- **PHYSLITE:** rate-per-branch can vary a lot (cost of decompression, interpretation), some branches are not (yet) readable with uproot
- NanoAOD: very large effect of compression algorithm: switching from LZMA to ZSTD brought 2.5x rate improvement
- Scaling Dask to 2k+ workers generally works fine, need more testing combining large numbers of workers and very complex graphs
- Good performance observed also with **TaskVine** as alternative scheduler for graphs
- Scale of challenge allowed to identify new bottlenecks (many of which have already been fixed), e.g. object store needing to scale to ServiceX output

- The 200 Gbps project brought together a broad community with a shared ambitious goal
- It was a success! Demonstrated feasibility of the desired data rate
- Many lessons learned and follow-up work identified
- This is a checkpoint on our way towards HL-LHC

More information: WLCG / HSF workshop talk, iris-hep/idap-200gbps, iris-hep/idap-200gbps-atlas

200 Gbps related slides summarize a large body of work across IRIS-HEP and USCMS/USATLAS. Thank you to everyone for your contributions!

- Fermilab: Lindsey Gray, Nick Smith
- Morgridge: Brian Bockelman
- Notre Dame: Ben Tovar
- Princeton: Jim Pivarski, David Lange
- UChicago: Lincoln Bryant, Rob Gardner, Fengping Hu, David Jordan, Judith Stephen, Ilija Vukotic
- National Center for Supercomputing Applications: Ben Galewsky
- U. Nebraska: Sam Albin, Garhan Attebury, Carl Lundstedt, Ken Bloom, Oksana Shadura, John Thiltges, Derek Weitzel, Andrew Wightman
- UT-Austin: KyungEon Choi, Peter Onyisi
- U. Washington: Gordon Watts
- U. Wisconsin: Alex Held, Matthew Feickert

Thank you for your attention!

If you have any questions, please feel free to get in contact directly or via <u>analysis-grand-challenge@iris-hep.org</u> (sign up: <u>google group link</u>)