

DRD2: Liquid Detectors R&D for neutrinos, dark matter and opportunities at Boulby

Roxanne Guenette, Jocelyn Monroe, Ruben Saakyan & Paul Scovell

DRD-UK Meeting 11 April 2024

The Science covered

Neutrinos

- Oscillation precision measurements (δ_{CP}, mass ordering, θ₂₃ octant, sterile vs)
- Neutrino interactions
 (from CEvNS to DIS)
- Astro neutrinos

μBooNE

Dark Matter

• Direct detection (WIMPs, ...)

 Search for Majorana neutrinos

The Physics Needs (high level overview)

Neutrinos

 Push Energy thresholds down to
 ~1MeV to enhance
 oscillation physics,
 supernovae vs study,
 to enable solar vs ...

· Unambiguous readout

Scalability

Dark Matter

 Push Energy thresholds down to 1 meV/10 eV/1 keV to enable low mass DM/1 GeV DM/ WIMPs.

Reduce background rates

Scalability

<u>Ονββ</u>

 Improve Energy Resolution to sub-% FWHM

Reduce
 background rates

Scalability

Future targeted *projects*

<u>Liquid Nobles</u> (Argon/Xenon)	Liquid Scintillator	Water Cherenkov
 Dark Matter (Xe): XLZD (Few R&D needs from inputs) Dark Matter (Ar): Argo/ 	• THEIA (WbLS), • LS 0vββ: SN0+ high	 HyperK (Few R&D needs from inputs) Future neutrino
GADMC Neutrinos: DUNE LAr	Te doping, KL-Z+ • Opaque LS: LiquidO	telescopes
$3^{rd}/4^{th}$ modules $0_V\beta\beta$: nEXO		
• Future Kilotonne-scale Xenon detectors: https://indico.slac.stanford.edu/event/8015		

R&D Roadmap for Liquid Detectors (DRD2)

DRDT 2.1 Develop readout technology to increase spatial and energy resolution for liquid detectors

Liquid

- **DRDT 2.2** Advance noise reduction in liquid detectors to lower signal energy thresholds
- **DRDT 2.3** Improve the material properties of target and detector components in liquid detectors
- **DRDT 2.4** Realise liquid detector technologies scalable for integration in large systems

5

(https://cds.cern.ch/record/2784893)

ECFA

Collaboration organisation

- Interim Spokespeople: Roxanne Guenette & Jocelyn Monroe
- Interim Work Package tasks leads:

	Charge Readout	Light Readout	Target Properties	Scaling-up Challenges
A .	Pixels & charge+light Group leaders J. Asaadi (US) & E.Gramellini(UK) Charge-to-light, electroluminescence & amplification Group leaders Deisting (DE) & K. Mavrokoridis (UK)	Increased sensor quantum efficiency Group leaders J. Monroe(UK), F. Retiere (CA) & P. Agnes(IT) Higher efficiency WLS and collection Group leaders C. Cuesta (ES), M. Kuzniak (PO) & J. Martin-Albo (ES) Improved sensors for LS & WC Group leaders	Target properties and isotope loading of LS & WC Group leadersS. Schopmann (DE), H.Steiger (DE) & M. Wurm(DE)Target properties and isotope loading of noble elements Group leaders	Radiopurity & background mitigation Group leadersJ. Dobson (UK) & R. Santorelli (ES)Detector and target procurement/production & purification Group leadersW. Bonivento (IT) & Y. Meh (US)Large-area readouts Group leaders
	No current representation, but topic to consider for future	Entirely covered by DRD4, serves as liaison	C. Franco (FR), A. Szelc(UK) & A. Zani (IT)	J. Crespo (ES) & G. Fiorillo (IT) Material properties Group leaders
				No current representation.

but topic to consider for future

WP1	WP2	WP3	WP4
Charge Readout	Light Readout	Target Properties	Scaling-up Challenges
Pixels & charge+light Group leaders	Increased sensor quantum efficiency Group leaders	Target properties and isotope loading of LS & WC	Radiopurity & background mitigation Group leaders
Charge-to-light, electroluminescence & amplification Group leaders	Higher efficiency WLS and collection Group leaders	Group leaders	Detector and target procurement/production & purification Group leaders
lon detection Group leaders	Improved sensors for LS & WC Group leaders	and isotope loading of noble elements Group leaders	Large-area readouts Group leaders

7

 Novel technologies are needed for charge-to-light conversion to enable future detector sizes and to increase the detector sensitivity.

WP2 - Light Readout

- O(0.1-10) kT experiments are, and are planned, noble targets which scintillate in the **VUV wave** He, Xe)
 - Aim: photon readouts reaching O(100 m²), *cryo* electroluminescence
 - Key challenges: decrease reflectivity, increase collection efficiency, increase quantum efficiency
 Ion detection
- Group leaders
 Exploration of new materials, i.e. better wavelength shifters, light traps with dichroic filters, coatings optimised for range of angles of incidence, metalenses, and new processes (i.e. BSI-SPAD + passivation)

Pixels & charge+light Group leaders Charge-to-light, electroluminescence & amplification Group leaders Higher efficiency WLS and collection Group leaders Charge-to-light, electroluminescence & amplification Group leaders Higher efficiency WLS and collection Group leaders

Charge Readout

Conveners

for LS & WC Group leaders

Light Readout

Conveners

WP3 - Target Properties

- Aim is to increase photon yield and doping, *improve* understanding c.
 physics/medical capability to large paths....
- Cryogenic noble gases (CNG):
- Liquid Argon
- Liquid Xenon
- Liquid Helium (future?)
- Doping of liquid Argon with Xenon or more complex mixtures

A. Zani, D. Franco 2nd Liquid Detectors Community Meeting—

Pixels & Increased sensor Target properties charge+light and isotope loading quantum efficiency **Group leaders Group leaders** of LS & WC **Group leaders** Charge-to-light, **Higher efficiency** electroluminescence WLS and collection & amplification **Group leaders Group leaders Target properties** Liquid scintillat Qan Ghydrer sensors and isotope loading of noble elements

Light Readout

Conveners

Target Properties

Conveners

Group leaders

- Solvents. LAB, DIN, PC, Xayde Meders.
- Diluted Solvents
- Slow Scintillators and Blended
- Solvents Wavelength Shifters
- Water Based Scintillators + Surfactants
- Loading of scintillators with Gd, Te, Xe, Cd, B, Li, In ...

- LSc challenges in scale-up synthesis of laboratory-prepared fluorescence materials
- Gd-doping now widespread in use, R&D needs on increasing concentration, purity, optics
- · Large scale assembly and test facilities needed, including underground

Vision: develop DRD2 Collaboration coordinated requests to 'accessgiving' infrastructures

CERN Neutrino Platform

- Large scale cold box, cryogenics
- Charged particle beam
 <u>Gran Sasso ++</u>
- Underground facility
- Cryogenic infrastructure Local labs for specific tests
- Readout
- Assembly

W. Bonivento, J.	Dobson, G.	Fiorillo, 2nd
Liquid Detectors	Community	Meeting

Infrastructure	Location	Work Package . Task	Current/Future
MMP Common Test Platform	SNS	1.1	Current
MMP Common Test Platform	CERN (potentially Neutrino Platform)	1.1	Future
ARIADNE	Liverpool	1.2	Current
NUXE	UCSD	1.2	Future
PANCAKE	Freiburg	1.2	Current
PIONEER	TRIUMF	2.1	Current
BUTTON	Boulby	2.1	Current
QE, noise vs. (λ, T)	CIEMAT, Liverpool, Napoli	2.1	Future
CLEAR	TRIUMF	2.1	Future
SOLAIRE	Boulby	2.1	Future
Materials characterisation	Nikhef	2.2	Future
WLS/light collection	Astrocent	2.2	Future
1TBNL, 30TBNL	BNL	3.1	Current
1TBNL, 30TBNL	BNL	3.1	Current
Xenoscope	Zurich	3.2	Current
WbLS Testbeds	various	4.2	Current
100 tonne-scale WbLS facility	TBD	4.2	Future
URANIA	Colorado	4.2	Current
ARIA	Sardinia	4.2	Current
Neutrino Platform	CERN	4.3	Current
WCTE	CERN	4.3	Current

DRD2 Collaboration

- DRD2 held its first Collaboration Meeting in February (https://indico.cern.ch/event/1367848
- Currently ~160 members from 71 institutions
- Large breath of R&D efforts were presented
- Use/sharing of infrastructure is desired and was discussed
- Recently elected the new Collaboration Board Chair (Walter Bonivento)
- In process to vote the by-laws to proceed to spokespeople elections
- You are welcome to join at any time! Email Roxanne, Jocelyn or Walter

roxanne.guenette@manchester.ac.uk jocelyn.monroe@physics.ox.ac.uk walter.bonivento@cern.ch

DRD2: UK input

Charge readout	Light readout	<u>Target</u> <u>Properties</u>	<u>Scale-up</u> <u>challenges</u>
 Manchester Liverpool 	 Edinburgh Manchester Liverpool Open Uni. RAL/STFC RAL PPD Royal Holloway Royce Institute Sussex York 	 Edinburgh Liverpool King's Oxford 	 Boulby (STFC) Edinburgh King's RAL PPD Sheffield UCL

DRD2: UK input

DRD2: UK input -> A coherent picture?

Opportunities at Boulby: SOLAIRE

- Under the UKRI invite-only research grant call "to deliver a dark matter science project at the Boulby Underground Laboratory"
- SOLAIRE proposal is a low-mass dark matter experiment that enables studies for neutrino physics and infrastructure for R&D demonstration

SOLAIRE concept

- Central 1 ton dual-phase LAr region surrounded by a 12 ton single-phase LAr TPC (Phase 1: AAr, Phase 2: UAr, Phase 3: adding dopants?)
- Initial studies suggest excellent prospects for competitive sensitivity in dark matter
- Early opportunity for people interested in future sensor technologies to test instrumentation in large low-backgrout
 Solar
 Buffer Veto

SOLAIRE Community

Dark matter, neutrino and instrumentation communities

Dark Matter science

Solar Neutrino

Instrumentation

SOLAIRE sketch NOT to scale

SOLAIRE status

- UKRI has invited SOLAIRE to submit a full proposal
- Organisation:
 - WBS0: Management and Boulby Laboratory liaison
 - WBS1: Detector infrastructure & installation
 - WBS2: Inner detector
 - WBS3: Outer detector
 - WBS4: Physics and software
- Each work package will have a UK-lead and a non-UK lead
- WP meetings expected soon (open to all interested participants!)
- If you want to get involved contact Darren Price (Darren.Price@manchester.ac.uk)

Summary

- DRD2 collaboration spans a wide range of R&D activities and a lot of interests for collaborative efforts
- In the UK, the theme of *Light Detection* seems to allow for some coherence without excluding efforts
- SOLAIRE offers a unique and strategic opportunity to connect to Boulby and for instrumentation test bed and should attract DRD2 experts (join in!)
- We need to think about the Early Stage R&D Grant call to decide what proposal(s) to put forward under DRD2-UK

Backup

SOLAIRE timeline

Phased construction and commissioning/science plan

1: Atmospheric argon fill: commissioning cryostat, field cage etc.; opportunity for instrumentation testing in large Ar volumes and complementary science outputs + proof-of-principle studies

2: Ultra-radiopure underground argon fill: installation and commissioning of diving bell and exploitation of dark matter search program

(3: Beyond funding call, potential opportunities for expansion of science programme, unique national infrastructure for instrumentation development and testing)