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Motivation
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• Dark matter revealed its presence through gravitational interactions.
• Portals to the dark sector are critical to probing its nature.
•  They drive: 

- Cosmological history (Relic abundance), 
- Direct / Indirect detection, 
- Collider searches.

• Known portals are scarce. 
- Renormalizable: , , . 
- Higher-dimensional: , …

H†H S†S BμνXμν L̄HN
aG ∧ G

SM Dark

gravity

+
PORTAL?



• Novel signatures at Belle-II

3

Today
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• A novel portal topological interaction between QCD and Dark Pions!

QCD 
pions

Dark  
pions

Topological  
PORTAL

• Elegant realization of the light thermal inelastic DM scenario.
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•
• Chiral anomalies
• Dirac quantisation
• The WZW term

χPT
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Chiral Lagrangian
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• Low-energy limit of QCD

G = SU(3)L × SU(3)R

ℋ = SU(3)L+R

⟨q̄i
Lqj

R⟩ ≈ Λ3δij

• Chiral symmetry breaking

• Coset space = vacuum manifold

• Goldstone (Pion) matrix

X =
G
ℋ

= SU(3)⟨⟩ij → (L†R)ij

U(x) : M4 → SU(3)

G : U(x) → L†U(x)R

mu,d,s < Λ
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Chiral Lagrangian
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• CCWZ terms are invariant under both.
• QCD preserves only  

e.g. 
P = P0(−1)Nπ

K+K− → (ϕ) → π+π−π0

• Low-energy limit of QCD

G = SU(3)L × SU(3)R

⟨q̄i
Lqj

R⟩ ≈ Λ3δij

• Chiral symmetry breaking

• Coset space = vacuum manifold

• Goldstone (Pion) matrix

⟨⟩ij → (L†R)ij

U(x) : M4 → SU(3)

G : U(x) → L†U(x)R

•  (non-linear effective action)χPT
Weinberg ’68, CCWZ ’69 

ℒ =
f 2
π

4
tr (DμU†DμU) + 𝒪(D4

μ)

• Symmetries

Witten ‘83

1.
2.

P0 : ⃗x → − ⃗x
(−1)Nπ : U → U† ⟹ πa → − πa

“Missing terms?”

mu,d,s < Λ

ℋ = SU(3)L+R

X =
G
ℋ

= SU(3)
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Chiral anomalies
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π0 → γγ η → γγ

Omnipresent

U(1)A

U(1)QED

U(1)QED

Mixed (ABJ) anomaly Adler ; Bell, Jackiw ‘69

Q: How does arise in a -invariant EFT? G
Wess, Zumino ’71

Witten ‘83

• Violates  and  
keeping 

P0 (−1)Nπ

P

Anomaly matching (’t Hooft): Deep IR
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Invariant action?
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• An attempt to construct a -invariant Lagrangian:G

Witten ‘83

-oddP0

No -invariant term in 4d violates G P0

• But 4d covariant EOM exist:

• How can we build an invariant action?

-oddP0
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Invariant action?
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Witten ’83: Global aspects of current algebra

• The WZW action:

• Extend  to a 5d bulk  whose boundary is a 4d spacetime

• Action  where  is a 5-form 

Properties of :
• -invariant
• Closed: 
• Integral: The path integral phase  independent of  

U(x) D

S ∼ ∫D
ω5 ω5 ∼ tr(U−1dU)5

ω5
G

dω5 = 0
eiS D (Topological)
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Dirac quantisation

Admir Greljo | Topological Portal to the Dark Sector

Consider a charge  moving on a unit sphere  around a monopole e S2 g

∇ × A = B =
g ̂r

4πr2
⟹ ∫ dS ⋅ B = g

Dirac string 
Rotational symmetry violated, thus

EOM:

S = ∫ dt ( 1
2

mv2 + ev ⋅ A)
is not manifestly symmetric.

m
dv
dt

= ev × B

AN
ϕ =

g (1 − cos θ)
4πr sin θ

Symmetries of ··xi = ϵijkxj
·xk

-  rotations
- LHS:  and 
- RHS: 

SO(3)
P T
PT
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Dirac quantisation
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Dirac quantisation
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Consider a charge  moving on a unit sphere  around a monopole e S2 g

In QM, a phase of a closed orbit

α = ∮γ
A ⋅ dx = ∫D

dS ⋅ B • -invariant 2-form 
  

but  is not unique.

SO(3)
Fij ∼ ϵijkxk / |x |3

D

Witten ‘83

Thus, , implies eieα = eieα′￼

eg = 2πn, n ∈ Z

π1(S2) = 0
“integrality condition”

π2(S2) = Z
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- Compactify the spacetime to a large 4d sphere  (fields asymptote at infinity)
- The goldstone matrix 

S4

U(x) : S4 → SU(3)
Witten ‘83

1. -invariant
2. Closed: 

G
dω = 0

This is simply a restatement of the Dirac quantisation condition that we already met

in Section 1.1.

5.5.2 A Five-Dimensional Action

With the discussion of the magnetic monopole fresh in our minds, let’s now return to

the chiral Lagrangian. We would like to ask if there is some action which respects the

SU(Nf )L ⇥ SU(Nf )R symmetry of the chiral Lagrangian and reproduces the term on

the right-hand-side of (5.31). The answer is yes, but it can only be written by invoking

a fifth dimension.

We will work in the Euclidean path integral and the argument is simplest if we take

our spacetime to be S4. We introduce a five-dimensional ball, D, such that @D = S4.

We extend the fields U(x) over S4 to U(y), where y are coordinates on the ball D. We

can then reproduce the equation of motion (5.31) from the action

S =
f 2
⇡

4

Z
d4x tr(@µU

†@µU) + k

Z

D

d5y ! (5.34)

where

! = � i

240⇡2
✏µ⌫⇢�⌧ tr

⇣
U †

@U

@yµ
U †

@U

@y⌫
U †

@U

@y⇢
U †

@U

@y�
U †

@U

@y⌧

⌘
(5.35)

This is the Wess-Zumino-Witten (WZW) term. There are a few things to say about

this. First, it is manifestly invariant under the SU(Nf )L ⇥ SU(Nf )R chiral symmetry.

Second, it naively appears to depend on the choice extension of U(x) to the five-

dimensional space U(y), but this is an illusion. The equations of motion computed

from the action � depend only on U(x) restricted to the boundary S4. There are a

couple of ways to see this. A somewhat involved calculation shows that the variation

of � is indeed a boundary term. Alternatively, we can expand U in the pion fields as

in (5.29),

U †@µU =
2i

f⇡
@µ⇡ +O(⇡2)

Then Z

D

d5y ! =
2

15⇡2f 5
⇡

Z

D

d5y ✏µ⌫⇢�⌧@µ tr
⇣
⇡@⌫⇡@⇢⇡@�⇡@⌧⇡

⌘
+O(⇡6)

=
2

15⇡2f 5
⇡

Z

S4

d4x ✏⌫⇢�⌧ tr
⇣
⇡@⌫⇡@⇢⇡@�⇡@⌧⇡

⌘
+O(⇡6)

Written in this form, the SU(Nf )L ⇥ SU(Nf )R symmetry is no longer manifest. This

is entirely analogous to the lack of manifest rotation symmetry in the Dirac monopole

connection. Nonetheless, since it came from the term (5.34), the symmetry must be

there, albeit hidden.
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Tong, Gauge Theory

• , unique 5-form:U(y) : S5 → SU(3)
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The WZW action
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Tong, Gauge Theory

We see that the new term gives a five-point interaction between Goldstone modes.

In the context of QCD, this mediates the decay K+ + K� ! ⇡+ + ⇡� + ⇡0, which

explicitly breaks the (�1)N⇡ symmetry of the original chiral Lagrangian.

Quantisation of the Coe�cient

Just as for the Dirac monopole, there is an ambiguity in our choice of five-dimensional

ball D with @D = S4. We could just as well take a ball D0, also with @D0 = S4 but

with the opposite orientation. We can now make the same kind of arguments that, in

(5.33), gave us Dirac quantisation. We have

exp

✓
ik

Z

D

d5y !

◆
= exp

✓
�ik

Z

D0
d5y !

◆

Stitching together the two five-dimensional balls now makes a five-sphere: D[D0 = S5.

For our path integral to make sense, we must have

exp

✓
ik

Z

S5

d5y !

◆
= 1 (5.36)

By now it’s probably no surprise to learn that there’s some pretty topology that un-

derlies this formula! The integrand provides a map from S5 to the group manifold

SU(Nf ), parameterised by U(y). Such maps are characterised by the fifth homotopy

group,

⇧5(SU(N)) = Z for N � 3

This means that as long as we have Nf � 3 flavours, each map can be assigned a

winding n 2 Z. It turns out that this winding is computed by
Z

S5

d5y ! = 2⇡n

The quantisation condition (5.36) is then satisfied providing

k 2 Z

This leads us to our next question. What is k?

Rediscovering the Anomaly

The Wess-Zumino-Witten term is closely related to the chiral anomaly. This, it turns

out, will give us a strategy to determine the integer k.
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winding n 2 Z. It turns out that this winding is computed by
Z

S5

d5y ! = 2⇡n

The quantisation condition (5.36) is then satisfied providing

k 2 Z

This leads us to our next question. What is k?

Rediscovering the Anomaly

The Wess-Zumino-Witten term is closely related to the chiral anomaly. This, it turns

out, will give us a strategy to determine the integer k.
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• , unique 5-form:U(y) : S5 → SU(3)

3.  Integral

This is simply a restatement of the Dirac quantisation condition that we already met

in Section 1.1.
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a fifth dimension.

We will work in the Euclidean path integral and the argument is simplest if we take
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We extend the fields U(x) over S4 to U(y), where y are coordinates on the ball D. We

can then reproduce the equation of motion (5.31) from the action

S =
f 2
⇡

4

Z
d4x tr(@µU

†@µU) + k

Z

D

d5y ! (5.34)

where

! = � i

240⇡2
✏µ⌫⇢�⌧ tr

⇣
U †

@U

@yµ
U †

@U

@y⌫
U †

@U

@y⇢
U †

@U

@y�
U †

@U

@y⌧

⌘
(5.35)

This is the Wess-Zumino-Witten (WZW) term. There are a few things to say about

this. First, it is manifestly invariant under the SU(Nf )L ⇥ SU(Nf )R chiral symmetry.

Second, it naively appears to depend on the choice extension of U(x) to the five-

dimensional space U(y), but this is an illusion. The equations of motion computed

from the action � depend only on U(x) restricted to the boundary S4. There are a

couple of ways to see this. A somewhat involved calculation shows that the variation

of � is indeed a boundary term. Alternatively, we can expand U in the pion fields as

in (5.29),

U †@µU =
2i

f⇡
@µ⇡ +O(⇡2)

Then Z

D

d5y ! =
2

15⇡2f 5
⇡

Z

D

d5y ✏µ⌫⇢�⌧@µ tr
⇣
⇡@⌫⇡@⇢⇡@�⇡@⌧⇡

⌘
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=
2

15⇡2f 5
⇡

Z

S4
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⌘
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Written in this form, the SU(Nf )L ⇥ SU(Nf )R symmetry is no longer manifest. This

is entirely analogous to the lack of manifest rotation symmetry in the Dirac monopole

connection. Nonetheless, since it came from the term (5.34), the symmetry must be

there, albeit hidden.
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• Gauge 

•
U(1)QED ⊃ SU(3)L+R

U → U + iϵ[Q, U]

Baryon Quark Content Mass (in MeV) Lifetime (in s)

Proton p uud 938 stable

Neutron n udd 940 103

Lambda ⇤0 uds 1115 10�10

Sigma ⌃+ uus 1189 10�10

Sigma ⌃0 uds 1193 10�19

Sigma ⌃0 dds 1197 10�10

Xi ⌅0 uss 1315 10�10

Xi ⌅� dss 1321 10�10

For the pions, we showed how the mass splitting can be explained from the chiral

Lagrangian. We will not do this for baryons, although with some work one can show

that the Skyrmion spectrum indeed gives reasonable agreement.

5.4.3 Electromagnetism, the Weak Force, and Pion Decay

It’s not just the quark masses that explicitly break the SU(3)V flavour symmetry of

the Standard Model; the symmetry is also broken by the coupling to the other forces.

At low energies, the relevant force is electromagnetism. The U(1)EM of electromag-

netism is a subgroup of SU(3)V , generated by

Q =

0

BB@

2
3 0 0

0 �1
3 0

0 0 �1
3

1

CCA (5.25)

This is enough to tell us how to couple photons to the chiral Lagrangian. We simply

need to replace the derivatives in (5.7) with covariant derivatives,

S =

Z
d4x

f 2
⇡

4
tr (DµU † DµU) (5.26)

where

DµU = @µU � ieAµ[Q,U ]

with e the electric charge of an electron.
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• Gauge 

•
U(1)QED ⊃ SU(3)L+R

U → U + iϵ[Q, U]

with the four-dimensional current given by

Jµ =
1

48⇡2
✏µ⇢�⌧ tr

⇣
{Q,U †} @⇢U U †@�U U †@�U

⌘

However, it turns out that we’re still not done. To get a fully gauge-invariant action,

we need to work to one higher order in the gauge coupling e. Here we simply quote the

result: the fully gauge invariant WZW term is given by

SWZW = k

Z

D

d5x ! � e

Z
d4x Aµ(x)J

µ

+
ie2

24⇡2

Z
d4x ✏µ⌫⇢�(@µA⌫)A⇢tr

⇣
{Q2, U †} @�U + U †QUQU †@�U

⌘�

How does this help us determine k? To see this, we need to expand out this action in

terms of pion fields. For simplicity, let’s do this for Nf = 3 quarks, with the charge

matrix (5.25) appropriate for QCD. Among the order e2 terms from above, there sits

L =
ke2

96⇡2f⇡
⇡0✏µ⌫⇢�Fµ⌫F⇢�

But we’ve seen this before: this is the term which captures the anomaly (5.27). To

agree with the anomaly, the integer k must be equal to the number of colours

k = Nc

This is a beautiful result. Until now the chiral Lagrangian has appeared to be inde-

pendent of the gauge group SU(Nc); all that was needed was for the gauge dynamics

to initiate chiral symmetry breaking and then it seemed that it could be forgotten. We

see that this isn’t quite true: a memory of the underlying gauge group survives as the

coe�cient of the WZW term.

5.5.3 Baryons as Bosons or Fermions

We saw in section 5.3 that the chiral Lagrangian provides a lovely and surprising new

perspective on baryons: they are solitons, constructed from topologically twisted pion

fields. The conserved baryon current is identified with the topological current

Bµ =
1

24⇡2
✏µ⌫⇢�tr (U †(@⌫U)U †(@⇢U)U † @�U)

and the

This winding number — which we denote by B 2 Z — is computed by the integral

B =
1

24⇡2

Z
d3x ✏ijktr (U

†(@iU)U †(@jU)U † @kU)
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⌘

However, it turns out that we’re still not done. To get a fully gauge-invariant action,

we need to work to one higher order in the gauge coupling e. Here we simply quote the

result: the fully gauge invariant WZW term is given by

SWZW = k

Z

D

d5x ! � e

Z
d4x Aµ(x)J

µ

+
ie2

24⇡2

Z
d4x ✏µ⌫⇢�(@µA⌫)A⇢tr

⇣
{Q2, U †} @�U + U †QUQU †@�U

⌘�

How does this help us determine k? To see this, we need to expand out this action in

terms of pion fields. For simplicity, let’s do this for Nf = 3 quarks, with the charge

matrix (5.25) appropriate for QCD. Among the order e2 terms from above, there sits

L =
ke2

96⇡2f⇡
⇡0✏µ⌫⇢�Fµ⌫F⇢�

But we’ve seen this before: this is the term which captures the anomaly (5.27). To

agree with the anomaly, the integer k must be equal to the number of colours

k = Nc

This is a beautiful result. Until now the chiral Lagrangian has appeared to be inde-

pendent of the gauge group SU(Nc); all that was needed was for the gauge dynamics

to initiate chiral symmetry breaking and then it seemed that it could be forgotten. We

see that this isn’t quite true: a memory of the underlying gauge group survives as the

coe�cient of the WZW term.

5.5.3 Baryons as Bosons or Fermions

We saw in section 5.3 that the chiral Lagrangian provides a lovely and surprising new

perspective on baryons: they are solitons, constructed from topologically twisted pion

fields. The conserved baryon current is identified with the topological current
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• VAAA anomaly: γπ+π−π0

• COMPAS @ CERN 2310.09138
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Invariant forms?

G = SU(3)L × SU(3)R

The only two -invariant forms on G X

ω5 ∼ tr(U−1dU)5 ω3 ∼ tr(U−1dU)3

WZW What can we do with this?

ℋ = SU(3)L+R

X =
G
ℋ

= SU(3)
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The 3-form 
ω3 ∼ tr(U−1dU)3

• It does not appear in the QCD action.

• However, it does appear in the topologically conserved current, 
the baryon number!

Consider a static field configuration:In fact, we can go further and write down a local current

Bµ =
1

24⇡2
✏µ⌫⇢�tr (U †(@⌫U)U †(@⇢U)U † @�U)

which obeys @µBµ = 0 by virtue of the anti-symmetric tensor. The winding number is

then given by B =
R
d3x B0.

It is natural to search for an interpretation of this conserved current Bµ, it terms

of the microscopic theory. The only candidate is U(1)V , strongly suggesting that we

should identify Bµ with the baryon number current and, correspondingly, the solitons

with baryons. This appears to be magic. We tried to throw away everything that

wasn’t massless. But if you treat the pions correctly, the baryons reappear as solitons.

A First Attempt at Solutions

What do these soliton solutions look like? Let’s start with the two-derivative chiral

Lagrangian. The associated energy functional for static field configurations is

E =
f 2
⇡

4

Z
d3x tr @iU

† · @iU

where now i = 1, 2, 3 runs over spatial indices only. Solutions to the equations of

motion are minima (or, more generally, saddle points) of this energy functional. A

simple scaling argument tell us that these don’t exist. To see this, consider a putative

solution U?(x) with energy E?. Then the new configuration U�(x) = U?(�x) has energy

E� =
f 2
⇡

4

Z
d3x tr @iU

†

?
(�x) · @iU?(�x) =

1

�
E?

We see that we can always lower the energy of any configurations simply by rescaling

its size. This simple observation — which goes by the name of Derrick’s theorem —

means that although the chiral Lagrangian has the topology to support solitons, no

static solutions exist. The reason for this is that the classical theory is scale invariant

so there is nothing to set the size of the soliton. (The only dimensionful quantity, f⇡,

multiplies the whole action and so doesn’t a↵ect the classical equations of motion).

5.3.1 The Skyrme Model

The situation improves when we include higher derivative terms. These will scale

di↵erently with �, and may result in a minimum of the energy functional.
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There are also bound states of quarks which carry quantum numbers under U(1)V .

These are the baryons that arise by contracting the a = 1, . . . , Nc colour indices.

Schematically these take the form

✏a1...aNc
 a1
i1
. . . 

aNc
iNc

(5.15)

where we have neglected the spinor indices. The baryons are bosons when Nc is even

and fermions when Nc is odd. With our normalisation, they have charge +Nc under the

vector symmetry U(1)V . Often one rescales the charges of the quarks to have U(1)V
charge 1/Nc so that the baryon has charge +1; this re-scaled symmetry is then referred

to simply as baryon number.

Assuming that our theory confines, the baryons are expected to have mass ⇠ ⇤QCD.

Nonetheless, they are the lightest particles carrying U(1)V charge and so are stable.

There is no reason to expect that the chiral Lagrangian knows anything about the

baryons. Indeed, to construct the chiral Lagrangian we intentionally threw out all but

the massless excitations. It is therefore something of a wonderful surprise to learn that

the baryons do arise in the chiral Lagrangian: they are solitons.

The Topological Charge

Let’s first show that the chiral Lagrangian has a hidden conserved current. Static field

configurations in the chiral Lagrangian are described by a map from spatial R3 to the

group manifold SU(Nf ). If we insist that the field asymptote to the same vacuum state

asymptotically so, for example,

U(x) ! 1 as |x| ! 1

then we e↵ectively compactify R3 to S3. Now static configurations can be thought of

as a map

U(x) : S3 7! SU(Nf )

Such configurations are characterised by their winding

⇧3(SU(Nf )) = Z

This winding number — which we denote by B 2 Z — is computed by the integral

B =
1

24⇡2

Z
d3x ✏ijktr (U

†(@iU)U †(@jU)U † @kU) (5.16)
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π3(SU(3)) = Z
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Conserved winding no:
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(antisymmetry)

The only candidate symmetry is  !U(1)V

Goldstone, Wilczek ‘81

The global symmetry of QCD:  G × U(1)V
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ωPORTAL
5 = ωQCD

3 ∧ ωDARK
2

Davighi, AG, Selimovic; 2401.09528

What else can we do with this?

https://arxiv.org/abs/2401.09528
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The setup

• We formulate a low-energy EFT for pions and dark pions

Dark sector coset

25
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The setup

• We formulate a low-energy EFT for pions and dark pions

Dark sector coset

• Properties of ωPORTAL
5 = ωQCD

3 ∧ ωDARK
2

• Closed:  implies  since 

• -invariance: Product structure implies  is -invariant

• Integrality: Cycles factorize; normalize  and  separately

dωPORTAL
5 = 0 dωDARK

2 = 0 dωQCD
3 = 0

G ωDARK
2 K

ωQCD
2 ωDARK

2

Which dark coset fits?
26



Admir Greljo | Topological Portal to the Dark Sector

Cosetology

• Consider following cosets (motivated by QCD-like theories):

27

Searching for a closed, invariant, and integral  2-formK/H

• All these are symmetric spaces   
-invariant forms on  are in 1-to-1 with cohomology classes

⟹
K K/H

de Rham cohomology  - the set of closed modulo exact -forms on Hk(M ) k M

see e.g. Davighi, Gripaios, Randal-Williams, 2011.05768

The portal  iff ∃ H2(K/H) ≠ 0

K
H
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Cosetology

28

QCD

The SIMP mechanism ( ) 
Hochberg et al, 1402.5143, 1411.3727 

3 → 2

• Unique choice of the dark coset!
Davighi, AG, Selimovic; 2401.09528

(mutually exclusive)

https://arxiv.org/abs/2401.09528
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The portal

• Take

29

• the volume form on S2

UU

• The portal

Two dark pions
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• Take

30

• the volume form on S2

UU

• The portal

• Expanding  U−1dU ⟹

• Use Stoke’s theorem

Two dark pions

The portal
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π+

π0

π−

χ1

χ2

The portal
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π+

π0

π−

χ1

χ2

• As before, QED gauging drives the phenomenology

1
f 2

π
∂μπ+∂μπ− ↝ eFμν

γ

π0

χ1

χ2

The portal
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• As before, QED gauging drives the phenomenology

• Prescription
Yonekura, 2009.04692

Shift  byωQCD
3

ℒ
The leading portal in the EFT power counting. The next term

1
f 2

π
∂μπ+∂μπ− ↝ eFμν

π+

π0

π−

χ1

χ2

γ

π0

χ1

χ2

The portal
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DM relic abundance 

• Solving Boltzmann eqs. numerically
mχ1

= mχ2 χ1 + χ2 yield

Davighi, AG, Selimovic; 2401.09528

• Our EFT applies when the freeze-out occurs after the QCD phase transition
• Quick thermalization — all we need is the theory at the freeze-out!

γ

π0

χ1

χ2

https://arxiv.org/abs/2401.09528
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• Consistent EFT description:

• A small explicit breaking of  needed to give , as in QCDK mχ ≠ 0

mχ ≲ 23TQCD ≈ 3.7 GeV

• Relic abundance fits for

  indeed the lightest dark states⟹ χ1,2
Dark number conservation (  symmetry) 
ensures the stability of the lightest dark pion.

Z2

• For a small mass splitting — co-annihilations 
⟹ (Boltzmann suppression)

DM relic abundance 
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Direct & Indirect DM detection

•  before the onset of BBN when 

• Dark matter is composed only of 

χ2 → χ1γπ0 Δmχ > mπ

χ1

• Indirect detection:  
2-form antisymmetrization:  

 annihilations highly suppressed
χ1 ∧ χ2

χ1χ1
Evades limits from CMB anisotropies on elastic s-wave scattering, Planck, 1807.06209

• Direct detection:  
 inelastic up-scattering kinematically forbidden 
 highly suppressed

χ1 → χ2
χ1 → χ1

The antisymmetrization inherent to forms provides an elegant 
and natural realization of the light thermal inelastic DM scenario!

hep-ph/0101138, hep-ph/0402065, 0807.2250, 0910.3698, 1305.3575, 1508.03050, 1904.09994, 1911.03176, 2405.08081, + …
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Collider searches

4

�m� . 1.7m⇡0 & 1.7m⇡0

Signature ⇡0 + /ET ⇡0 + /ET +DV(⇡0� /ET )

TABLE II. Collider signatures. Here ‘DV’ indicates a dis-
placed secondary vertex. The values of �m� for which
�2 lifetime is approximately 10�7 sec depend on the value
of m�1 , and vary from [1.3 � 2.1]m⇡0 in the mass region
m�1 2 [1� 3.5]GeV.

is shown by the blue line in Fig. 1, for which the topolog-
ical operator turns on at xQCD := m�/TQCD = 12. On
the other hand, if the initial yield of the dark pions is neg-
ligible, and they are produced only after the QCD phase
transition, they proceed with a quick thermalization fol-
lowed by the freeze-out, and the correct relic abundance
can still be attained. This is shown by an orange line
in Fig. 1, for which the QCD phase transition occurs at
x = xQCD = 17.

Consequently, the correct yield today (Y� for x ! 1)
can be achieved irrespective of the dark pion cosmologi-
cal history. The topological portal thus robustly sets the
correct relic abundance,

⌦�h
2
⇡

2xQCD TQCD Y1
3.6 · 10�9 GeV

⇡ 0.12 , (12)

through an interplay between the QCD phase transi-
tion onset relative to the dark pion mass, determined
by xQCD, and the xf = m�/fD ratio. In both scenar-
ios, the QCD phase transition should happen no later
than x = xmax = 23; after this point, the dark pion yield
drops below the value necessary to account for the DM
relic abundance. This limiting case is shown by a red
line in Fig. 1. The upper bound on xQCD translates to
an upper bound on m�. Specifically, to explain the relic
abundance via the topological portal points towards light
thermal DM with m� . 3.7 GeV.

In the computation, we used the QCD phase transi-
tion temperature, TQCD ⇠ 160 MeV, and the number
of e↵ective degrees of freedom, g⇤ ⇠ 18, assuming the
topological operator turns on only after the QCD phase
transition [1]. The fact that the correct relic abundance
demands fD ⇠ O(5.5�7)⇥

p
nm� ensures that the dark

pions are indeed the lightest dark states and forbids their
decay to e.g. dark glueballs.

The non-zero mass splitting, �m� = m�2 �m�1 , leads
to a suppression of the co-annihilation cross section. The
dominant e↵ect can be captured by introducing an ex-
ponential suppression factor e�x� in Eq. (11), where

� := �m�

m�1
[28, 29]. The resulting fD which fits the relic

abundance is, accounting for the mass splitting,

fD(�) ⇡ fD(0) e�
xmax�

4 , (13)

where the factor of 1/4 appearing in the exponent comes
from the dependence h�vi / x4

f in Eq. (11). This is a nu-
merically large suppression e↵ect that we should account
for in understanding the viable parameter space; for ex-
ample, for � = 5⇥

m⇡0

3.5GeV one finds fD(�)/fD(0) ⇡ 1/3.

FIG. 2. Limits by the B-factories on the parameter space
of dark pions with zero mass splitting. The signature cor-
responds to ⇡0 + /ET , where ⇡0 is identified as a photon
such that mono-� searches are used. The red lines delin-
eate the parameter space points giving the correct DM relic
abundance (solid: �m� = 0, dashed: �m� = m⇡0 , dotted:
�m� = 2m⇡0). Both Belle II exclusion lines correspond to
the projections [30], while BaBar already performed a mono-�
search [31].

IV. NOVEL COLLIDER PHENOMENOLOGY

With a non-zero mass splitting, �2 decays to �1 shortly
after freeze-out, leaving �1 as the sole dark matter com-
ponent. As a result, DM annihilations at later times are
suppressed, avoiding otherwise stringent indirect detec-
tion constraints from CMB anisotropies [6, 7]. Likewise,
direct detection experiments are ine↵ective for the inelas-
tic �1 ! �2 up-scattering.
How, then, can we test this scenario? Interestingly,

collider experiments o↵er a promising avenue through
e+e� ! �⇤

! �1�2⇡0 production. In particular, the re-
quired collider energy, high luminosity, and hermetic en-
vironment of Belle II result in exceptional sensitivity, po-
tentially covering the full parameter space set by the DM
relic abundance. The dark pion mass splitting �m� sug-
gests di↵erent search strategies, as summarised in Tab. II.
For a small mass splitting, �2 is detector stable,8 other-
wise, �2 decays at a displaced vertex.9 Neither of these
signatures have been explored in dedicated experimental
analyses so far.
To illustrate the potential of Belle II, we focus on the

small �m� scenario (detector-stable �2). We leave the
other case for future work. The energy of ⇡0 originating

8 When �m� < m⇡0 , the decay �2 ! �1��� through an o↵-shell
⇡
0 gives a lifetime & O(1) sec where the cosmological bounds kick

in. Thus, the interesting mass range for colliders is �m� > m⇡0 .
We note that the decay �2 ! �1�, näıvely induced at 1-loop, is
zero.

9 Prompt decays, which would require a large mass splitting, are
less motivated given Eq. (13).
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cal history. The topological portal thus robustly sets the
correct relic abundance,

⌦�h
2
⇡

2xQCD TQCD Y1
3.6 · 10�9 GeV

⇡ 0.12 , (12)

through an interplay between the QCD phase transi-
tion onset relative to the dark pion mass, determined
by xQCD, and the xf = m�/fD ratio. In both scenar-
ios, the QCD phase transition should happen no later
than x = xmax = 23; after this point, the dark pion yield
drops below the value necessary to account for the DM
relic abundance. This limiting case is shown by a red
line in Fig. 1. The upper bound on xQCD translates to
an upper bound on m�. Specifically, to explain the relic
abundance via the topological portal points towards light
thermal DM with m� . 3.7 GeV.

In the computation, we used the QCD phase transi-
tion temperature, TQCD ⇠ 160 MeV, and the number
of e↵ective degrees of freedom, g⇤ ⇠ 18, assuming the
topological operator turns on only after the QCD phase
transition [1]. The fact that the correct relic abundance
demands fD ⇠ O(5.5�7)⇥

p
nm� ensures that the dark

pions are indeed the lightest dark states and forbids their
decay to e.g. dark glueballs.

The non-zero mass splitting, �m� = m�2 �m�1 , leads
to a suppression of the co-annihilation cross section. The
dominant e↵ect can be captured by introducing an ex-
ponential suppression factor e�x� in Eq. (11), where

� := �m�

m�1
[28, 29]. The resulting fD which fits the relic

abundance is, accounting for the mass splitting,

fD(�) ⇡ fD(0) e�
xmax�

4 , (13)

where the factor of 1/4 appearing in the exponent comes
from the dependence h�vi / x4

f in Eq. (11). This is a nu-
merically large suppression e↵ect that we should account
for in understanding the viable parameter space; for ex-
ample, for � = 5⇥

m⇡0

3.5GeV one finds fD(�)/fD(0) ⇡ 1/3.

FIG. 2. Limits by the B-factories on the parameter space
of dark pions with zero mass splitting. The signature cor-
responds to ⇡0 + /ET , where ⇡0 is identified as a photon
such that mono-� searches are used. The red lines delin-
eate the parameter space points giving the correct DM relic
abundance (solid: �m� = 0, dashed: �m� = m⇡0 , dotted:
�m� = 2m⇡0). Both Belle II exclusion lines correspond to
the projections [30], while BaBar already performed a mono-�
search [31].

IV. NOVEL COLLIDER PHENOMENOLOGY

With a non-zero mass splitting, �2 decays to �1 shortly
after freeze-out, leaving �1 as the sole dark matter com-
ponent. As a result, DM annihilations at later times are
suppressed, avoiding otherwise stringent indirect detec-
tion constraints from CMB anisotropies [6, 7]. Likewise,
direct detection experiments are ine↵ective for the inelas-
tic �1 ! �2 up-scattering.
How, then, can we test this scenario? Interestingly,

collider experiments o↵er a promising avenue through
e+e� ! �⇤

! �1�2⇡0 production. In particular, the re-
quired collider energy, high luminosity, and hermetic en-
vironment of Belle II result in exceptional sensitivity, po-
tentially covering the full parameter space set by the DM
relic abundance. The dark pion mass splitting �m� sug-
gests di↵erent search strategies, as summarised in Tab. II.
For a small mass splitting, �2 is detector stable,8 other-
wise, �2 decays at a displaced vertex.9 Neither of these
signatures have been explored in dedicated experimental
analyses so far.
To illustrate the potential of Belle II, we focus on the

small �m� scenario (detector-stable �2). We leave the
other case for future work. The energy of ⇡0 originating

8 When �m� < m⇡0 , the decay �2 ! �1��� through an o↵-shell
⇡
0 gives a lifetime & O(1) sec where the cosmological bounds kick

in. Thus, the interesting mass range for colliders is �m� > m⇡0 .
We note that the decay �2 ! �1�, näıvely induced at 1-loop, is
zero.

9 Prompt decays, which would require a large mass splitting, are
less motivated given Eq. (13).

•Signatures
4

�m� . 1.7m⇡0 & 1.7m⇡0

Signature ⇡0 + /ET ⇡0 + /ET +DV(⇡0� /ET )

TABLE II. Collider signatures. Here ‘DV’ indicates a dis-
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of m�1 , and vary from [1.3 � 2.1]m⇡0 in the mass region
m�1 2 [1� 3.5]GeV.
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than x = xmax = 23; after this point, the dark pion yield
drops below the value necessary to account for the DM
relic abundance. This limiting case is shown by a red
line in Fig. 1. The upper bound on xQCD translates to
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FIG. 2. Limits by the B-factories on the parameter space
of dark pions with zero mass splitting. The signature cor-
responds to ⇡0 + /ET , where ⇡0 is identified as a photon
such that mono-� searches are used. The red lines delin-
eate the parameter space points giving the correct DM relic
abundance (solid: �m� = 0, dashed: �m� = m⇡0 , dotted:
�m� = 2m⇡0). Both Belle II exclusion lines correspond to
the projections [30], while BaBar already performed a mono-�
search [31].

IV. NOVEL COLLIDER PHENOMENOLOGY

With a non-zero mass splitting, �2 decays to �1 shortly
after freeze-out, leaving �1 as the sole dark matter com-
ponent. As a result, DM annihilations at later times are
suppressed, avoiding otherwise stringent indirect detec-
tion constraints from CMB anisotropies [6, 7]. Likewise,
direct detection experiments are ine↵ective for the inelas-
tic �1 ! �2 up-scattering.
How, then, can we test this scenario? Interestingly,

collider experiments o↵er a promising avenue through
e+e� ! �⇤

! �1�2⇡0 production. In particular, the re-
quired collider energy, high luminosity, and hermetic en-
vironment of Belle II result in exceptional sensitivity, po-
tentially covering the full parameter space set by the DM
relic abundance. The dark pion mass splitting �m� sug-
gests di↵erent search strategies, as summarised in Tab. II.
For a small mass splitting, �2 is detector stable,8 other-
wise, �2 decays at a displaced vertex.9 Neither of these
signatures have been explored in dedicated experimental
analyses so far.
To illustrate the potential of Belle II, we focus on the

small �m� scenario (detector-stable �2). We leave the
other case for future work. The energy of ⇡0 originating

8 When �m� < m⇡0 , the decay �2 ! �1��� through an o↵-shell
⇡
0 gives a lifetime & O(1) sec where the cosmological bounds kick

in. Thus, the interesting mass range for colliders is �m� > m⇡0 .
We note that the decay �2 ! �1�, näıvely induced at 1-loop, is
zero.

9 Prompt decays, which would require a large mass splitting, are
less motivated given Eq. (13).

• Novel signatures yet to be explored 
by the experiment

• New analysis is needed, in particular 
for the displaced vertex

• Excellent prospects at Belle-II 

• If the signal is found, look for η

Our recast of the dark-photon mono-  searchγ
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