

FIAS Frankfurt Institute for Advanced Studies

Scientific Computing

Prof. Dr. Udo Kebschull Prof. Dr. Ivan Kisel Prof. Dr. Volker Lindenstruth Prof. Dr. Thomas Lippert Prof. Dr. Uli Meyer

Al for detection of problems in manned space missions

- Transmission time of radio signals between Mars and Earth is 3 to 22 minutes
- Mars missions cannot be controlled from Earth
- The aim of the project is to develop AI support for detecting critical system states in habitation modules on future space missions
- Analysis of recorded data from the Columbus module of the ISS
- Training of the AI
- Test run for validation
- Cooperation project with SVA and the German Aerospace Center (DLR)

Blockchain and distributed ledger in public sector

- New applications and further development of blockchain technology
- Management of authorizations in the context of the RADIUS protocol
- Monitoring access and securing documents in a cloud
- Proof of Useful Work consensus algorithm with data from highenergy physics
- Cooperation with
 - Hessian Center for Data Processing (HZD)
 - KGRZ Hesse ekom21

ALICE tracks in detector

Reconstruction of heavy-ion collisions

Full event reconstruction in CBM will be done on-line at the First-Level Event Selection (FLES) and off-line using the same FLES reconstruction package.

- Cellular Automaton (CA) Track Finder
- Kalman Filter (KF) Track Fitter
- KF short-lived Particle Finder

All reconstruction algorithms are vectorized and parallelized.

CBM: Tracking with Cellular Automaton at 10⁷ collisions/sec

ALICE: Search for charmed baryon decays with KF Particle

STAR: Online search for hypernuclei on HLT in BES-II (2019-2021)

Al package for data analysis in real time

- **ANN4FLES** is a C++ package for use of **A**rtificial **N**eural **N**etworks in the **CBM** experiment.
- It provides a variety of network architectures:
 - Multilayer Perceptron (MLP),
 - Convolutional Neural Network (CNN),
 - Recurrent Neural Networks (RNN),
 - Graph Neural Networks (GNN), and
 - Bayesian Neural Network (BNN).

CBM: Classification of collisions with Quark-Gluon-Plasma using ANN4FLES

CBM Readout and FLES system

- Readout systems: collect, aggregate and deliver data to online compute farm
- First Level Event Selector: event reconstruction

online, up to software trigger decision

setup avg. int. rate/1/s	hadron 5×10^6	$\begin{array}{c} \text{electron} \\ 1\times10^5 \end{array}$	$\begin{array}{c} \mathrm{muon} \\ 5\times10^6 \end{array}$	dark 0
	$\mathrm{GB/s}$	$\mathrm{GB/s}$	$\mathrm{GB/s}$	GB/s
BMON	_	0.2	_	0.0
MVD	_	5.0	_	3.5
STS	101.8	9.1	101.8	7.2
MUCH	_	_	37.3	7.5
RICH	_	1.6	_	0.8
TRD	207.6	9.3	24.8	4.3
TOF	42.7	1.0	9.9	0.1
PSD	—	0.3	—	0.0
Sum	352.1	26.4	173.9	23.3

Requirements in Online TDR:

FIAS Frankfurt Institute Average total data rates sent from detectors to FLES

FLES timeslice concept

Conceptional idea of timeslice building:

All components from one time interval are combined into a processing interval (timeslice), and sent to the same processing node (PN)

Dual ring buffer memory scheme

Overview of the main data path in FLES

FLES online systems - TDR

Technical Design Report for the CBM

Online Systems – Part I

DAQ and FLES Entry Stage

The CBM Collaboration

July 2023

FLES pivotal for aggregating and processing of all CBM data online

First CBM TDR for a central system containing several subsystems

Accepted by ECE with no change request

DOI: 10.15120/GSI-2023-00739

FLES for mCBM operational and used in many beam times and data challenges

ALICE EPN farm

High-Level FPGA synthesis in HEP

- Compared to VHDL, high-level circuit synthesis significantly reduces the effort required to implement algorithms in hardware
- Use of the data flow paradigm for calculation with a large number of functional units, combined with pipeline parallelization
- Ideally suited for complex algorithms on data streams
- Applications in high-energy physics:
 - CBM: Online Feature Extraction for the Transition Radiation Detector in the triggerless run
 - ALICE: Development of a template library for the intuitive use of the data flow paradigm for the implementation of algorithms

ALICE on-line event reconstruction

CERNCOURIER.COM

FEATURE COMPUTING

- 2800 GPUs, 32 GB each
- 24640 CPU cores
- 200 TB main memory
- 200 PB mass storage
- Up to 1.3 TB/s ingres
- 200 GB/s egres
- 95% of processing on GPU
- Data distribution framework developed at FIAS

New nodes The event processing node racks in the ALICE computing farm, part of a completely new computing model for Run 3 and beyond.

ALICE UPS ITS GAME FOR SUSTAINABLE COMPUTING

The design and deployment of a completely new computing model – the O² project – allows the ALICE collaboration to merge online and offline data processing into a single software framework to cope with the demands of Run 3 and beyond. Volker Lindenstruth goes behind the scenes.

CMMS – Image Analysis for Microscopy

Quantitative Microscopy is evolving

- Deep Learning
- Increasing Data Sizes
- Streaming (Online) Analysis
- Smart Microscopy

Computing Requirements

- Support for Machine Learning Hard- and Software (Nvidia, AMD, Intel)
- Use of Dedicated Compute Resources
- Framework for Quantitative Microscopy

Arkitekt

Bioimage Analysis Framework

- Containerization (Reproducible)
- Machine Learning
 - Content-Aware Image Restoration
 - StarDist Registration

Collaborators:

J. Roos (Bordeaux University)

Multiview-Stitcher

Image Stitching Toolbox

- Registration
- Fusion
- Distributed Processing
- Hardware Acceleration

Collaborators:

- M. Albert (Institut Pasteur)
- A. Golden (Goethe-University)

Without (left) and with (right) Content Aware Fusion

CMMS Efficient Generation of Synthetic Networks

- Performance of many graph algorithms depend on specifics of the ٠ input graph class
 - Experiments yield crucial insides !
- **Real networks** .

۰

- are hard to acquire ۰
- pose legal or privacy concerns ٠
- are difficult to share, store & reproduce ٠
- contain noise or sampling artefacts •

- are often static / do not scale
- lack ground-truth
- are not well understood

- Parameterized synthetic models allow more systematic experiments
- Our network generators: ٠
 - I Handle billions of nodes & edges
 - Various models: pref. attachment, ۰ hyperbolic, fixed degree sequences, ...
 - Open source

- Often orders of magnitude faster than previous solutions Mathematically sound
- Guaranteed quality & performance
- Future challenge: Models and generators for *temporal* networks. ۰

Quantum Computing Research Activities

- Quantum Computer for computational purposes
- Development of algorithms
- Error mitigation methods
- Programming models for classical-quantum hybrid workflows
- Development of algorithms for quantum annealers
- Smart schedulers for modular supercomputer architecture (MSA) systems
- Quantum Computer at GU already ordered
- Close collaboration with NIC Jülich
- Quantum-Call in NHR Mid 2024

Quantum Computing Research Activities

- Error mitigation methods
 - Post processing for quantum computers in NISQ era to decrease noise
 - Development of a scalable method to support state of the art qubit numbers
 - New method developed
- Programming models for classical-quantum hybrid workflows
 - Extension of the task based programming model OmpSs to support QPUs
 - Allows users to offload tasks to a quantum computer from within C++ code
 - Libraries close to being completed
- Development of algorithms for quantum annealers
 - Focus on real-world optimization problems (e. g. portfolio optimization)
 - Research on different encodings and annealing techniques
 - Several new algorithms under development, patent applications under evaluation
- Smart schedulers for MSA systems
 - MSA systems have the potential to use compute resources more efficiently
 - Static scheduling limits the exploitation of this potential
 - Development of a more flexible scheduler which assigns resources dynamically

Quantum Computing Research Activities

Procurement and integration of a quantum computer at GU

- Arrival of QC planned for spring 24
- Size and technology
 - 5 qubits
 - Nitrogen-vacancy center based technology
- Software
 - Open Source access software system is developed
 - Integration into a HPC environment under way
- > NHR
 - Making the quantum computer available to NHR members
- Connection of the GU to the JUNIQ infrastructure of the FZ-Jülich
- Quantum-Call in NHR Mid 2024

Cooperations

- Connection between GU and JUNIQ-Infrastructure of FZ-Jülich
 - GU member of John-von-Neumann-Institute for Computing is decided in NIC
 - Cooperation contract about joint usage of infrastructure completed

o Use of Jülich D-Wave Quantumnannealer
o Use of Frankfurt Baby Diamond for JUNIQ

• Quantum-Call in NHR Mid 2024

Collaboration with humanities

Organisationsberatung, Supervision, Coaching (2024) 31:63–78 https://doi.org/10.1007/s11613-023-00861-z

HAUPTBEITRÄGE

"Wo die Cloud die Erde berührt". Rechenzentren zwischen Nachhaltigkeitsanforderungen und Innovationsblockaden

Simon Heyny \cdot Mardeni Simoni \cdot Katarina Busch \cdot Vera King \cdot Volker Lindenstruth

Eingegangen: 5. Oktober 2023 / Angenommen: 23. November 2023 © Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2023

Outlook

Support for Digital Twin development in HPC context (e.g. SCALE) Fast and efficient event reconstruction ALICE EPN / Outer Tracker for ALICE CBM (?) Quantum Computing

