Jet measurements with LHC Run 3 data at ALICE

Sungkyunkwan University Hyungjun Lee

arXiv: 2211.04384

Many successful campaigns in Run1 & Run2

- "jet quenching" effects in medium
- Many novel observables measured for the first time

Jets are collimated "spray" of hadrons originating from a high momentum quark or gluon produced in elementary particle collisions

Theoretically expected by perturbative QCD

• Jets are a powerful probe of QGP (Quark-gluon plasma) of matter created in heavy-ion collisions elementary particle collisions

Jet modification interacted with medium

Many important measurements testing QCD in vacuum and probing

- All jet analyses : statistics
 - Rare process of phase space inaccessible with Run 2 data
 - pp reference statistics often limiting factor when comparing pp and Pb—Pb
- Heavy-flavour jet analyses : spatial resolution
 - Statistical precision dependent on background subtraction

Bottlenecks in Run2 jet analyses

High-purity heavy-flavour jet candidate samples also crucial for high-precision measurements

ITS	Run2	Run3
Technology	Hybrid pixel, strip, drift	MAPS (Monolithic active pixel se
# of layers	6	7
Max rate (Pb-Pb)	1 kHz	100 kHz

- ALICE detector upgrade!
 - Continuous readout : increasing rate capability about ~ 50 times ITS impact parameter resolution : improving vertex precision about 3 ~ 6 times
- New integrated system for data acquisition
 - Allows for distributed and efficient processing of data

ALICE in Run3

Opportunities for HF jet in Run3

- Opportunities for Run 3
 - Heavy-flavour nuclear modification factor
 - Charmed baryon jet measurements
 - Heavy-flavour jet correlation measurements

D^0 tagged jets

- Current framework includes ...
 - Jet finding implemented for charged, neutral and full jets
 - Jet finding for HF jets
 - Full QA framework for jets
 - Jet matching between truth and detector level
 - Weighted MC processing
 - Jet triggering capabilities
 - Jet substructure tasks for inclusive and HF jets
 - Tree output tasks for jets and substructure for inclusive and HF jets
 - Background subtraction
- Working in progress ...

Need for an embedding framework becoming urgent in order to use MC for Pb—Pb collisions

Run 3 validation framework

Scheme

AliPhysics

Task by AliPhysics/PWGJE/EMCALJetTasks/UserTasks/ AliAnalysisTaskEmcalJetValidation.cxx

Compare with each AnalysisResult.root file

Run 3 validation framework

Selections

• Event Selections

Sel8 : minimum bias selection in ALICE Run 3

- Vertex triggering using FT0 detector (FT0C FT0A)
- Without ITS readout frame border
- Without Time frame border

ITS readout frame border schematics

Charged-jet production in pp collisions

Time frame border schematics

Selections

• Event Selections

Sel8 : minimum bias selection in ALICE Run 3

- Vertex triggering using FT0 detector (FT0C FT0A)
- Without ITS readout frame border
- Without Time frame border
- ► Sel8Full
 - Reject collisions in case of pileup with another collision in the same bunch crossing
 - Consider small difference between z-vertex from PV and from FT0

ו **3** - FT0A)

ther collision in the same bunch crossing k from PV and from FT0

Selections

- Track Selections
 - Global tracks : best quality tracks that are matched between ITS and TPC
 - TPC calibration is ongoing ... : Define uniform tracks

Charged-jet production in pp collisions

Response Matrix for p_{T} **Correction**

- - contains **multiple efficiencies**:
 - Collisions reconstruction, tracking, kinematic, and jet reconstruction

- First look at unfolded charged-particle jet distribution in ALICE Run 3 pp collisions at $\sqrt{s} = 13.6 \text{ TeV}$
 - **Probability distribution** in Run 3 VS cross-section in Run 2
- **PYTHIA8** to **Corrected DATA** ratios exhibit similar trend.
- While some efficiencies included in response matrix should be looked at.

Issue 1: Low Jet p_{T} **Resolution**

$$\Delta_{jet}^{res} = \frac{p_{T,jet}^{Gen} - p_{T,jet}^{Reco}}{p_{T,jet}^{Gen}}$$

- Gen. purp. MC (left) hardly describes high $p_{T,iet}$ classes
- Jet MC (middle) supplements, but resolution remains low due to unanchored status
- Shapes seems to have consistency with the previous (right) in low $p_{\rm T}$.
- high $p_{\rm T}$ classes should be discussed with track $p_{\rm T}$ resolution and jet enhanced MC sample (WIP)

10-1 10⁻² ⊨ 10⁻³

Issue 2: Low Jet Reconstruction Efficiency

• While previously Run 2 result shown 98 ~ 99%, still insufficient.

Track reconstruction efficiency check

- Track reconstruction efficiency on uniform tracks is better than previous Run 2 result ~ 90% at low $p_{\rm T}$.
- Investigating other possible causes of the low jet reconstruction efficiency

Charged-jet production in Pb—Pb collisions A. Landou , W. Feng

Event selection

oose

	No selection	+Vertex triggering
All collisions	3955	3588
%left	_	91%
0~10%	284	281
%left	_	99%
50~90%	1299	1273
%left	_	98%

Rho vs Centrality

$$\rho = \text{median}(\frac{p_{\text{T}}^{\text{Jet}}}{A})$$

Rho distribution according to centrality becomes more distinct with tighter event selection. Similar distribution with Run2 result.

Rho vs Centrality

$$\rho = \text{median}(\frac{p_{\text{T}}^{\text{jet}}}{A})$$

- Similar distribution with Run2 result.
- The abnormal distribution at $\rho = 0$ on apass2 data is disappeared in apass3

Rho distribution according to centrality becomes more distinct with tighter event selection.

2023 Data apass2 vs apass3

- Without leading track cut

Track reconstruction efficiency check

MMsel is same as Uniform tracks

$$\varepsilon_{\text{reco}}^{\text{jet}}(p_{\text{T,jet}}^{\text{gen}}) = \frac{N_{\text{matched}}(p_{\text{T,jet}}^{\text{gen}})}{N_{\text{generated}}(p_{\text{T,jet}}^{\text{gen}})}$$

- Efficiencies as a function of centrality will be studied.

Track reconstruction efficiency using uniform tracks is better than using global tracks

Heavy flavour charged-jet tagging in pp collisions H. Lee , H. Park

Heavy flavour charged-jet tagging in pp collisions

Heavy-flavour tagging strategy

- lifetime
- called as impact parameter

ALI-SIMUL-572367

ALI-SIMUL-572260

Tracks from heavy quark jet likely have large DCA (Distance of **closest approach to primary vertex)** because of their log

Select heavy flavour jet candidates using large DCA which is

- Geometric sign : $sign(\overline{\text{DCA}_{xv}} \cdot \overline{\text{Jet}_{P_{T}}}) = \pm 1$
- IP significance :
 - $d_{xy} = \text{DCA}_{xy} / \sigma_{xy}$

 $Sd_{xy} = Geometric sign \times d_{xy}$

Heavy flavour charged-jet tagging in pp collisions

Track counting method

- Selects the N tracks within the jet with the highest Sd_{xy} .
- The heavy-flavour jet by counting the tracks that exceed a set tagger working point threshold.

Larger for heavy-flavour tracks than light-flavor tracks, showing more pronounced asymmetry in beauty and charm jets.

Heavy flavour charged-jet tagging in pp collisions

Jet Probability method

Track probability :
$$P_{\text{trk}}(\text{S}d_{xy}) = \frac{\int_{-40}^{-|\text{S}d_{xy}|} R(x) \, dx}{\int_{-40}^{0} R(x) \, dx}$$

Jet probability: $\text{JP} = \Pi \times \sum_{k=0}^{N_{\text{trk}}-1} \frac{(-\log \Pi)^k}{k!}, \Pi = \prod_{i=1}^{N_{\text{trk}}} P_{\text{trk}}(x)$

• The $-\log(JP)$ distribution provides a clear separation between jets with low and high probabilities of containing heavy-flavour hadron decays

arXiv:2110.06104

Run3 on going analysis in Jet working group

- ► Jet resolution & reconstruction efficiency in pp and Pb—Pb collisions
- Implementing background subtraction method in Pb—Pb collisions
- heavy-flavour tagging using classical method in pp collisions
- ▶ ...

Various analyses of jets are being conducted in Run3!

- Many measurements will be possible for the first time.
- with less systematic uncertainty than Run2.
- dynamical and fast evolving field.

Various activities are underway, aiming for HP2024 & QM2025.

Thank you for listening!