

LHC Run 3 and results for SQM from CMS

Summary of CMS talk@ SQM2024 (Jun. 3-7, 2024, Strasbourg, France)

Section	Talk	Speaker
	Investigating bottom quark energy loss, hadronization, and B meson nuclear modification factors	Jhovanny Mejia Guisao
	Observation of double J/psi production in pPb collisions	Stefanos Leontsinis
	Detailed study of the production of Y mesons in PbPb collisions	Prabhat Ranjan Pujahari
	Probing a new regime of ultra-dense gluonic matter using high-energy photons	Pranjal Verma
	Measurement of the multiplicity dependence of charm hadron production in pPb collisions	Austin Baty
	Study of charm quark and QGP medium interactions via Lambda c and D0 production and collective flow	Soumik Chandra
	Measuring the speed of sound in the QGP	Michael Murray
	Measurement of strange particle femtoscopic correlations	Raghunath Pradhan
	Hyperon polarization along the beam direction in pPb collisions	Chenyan Li
	Using Multivariate Cumulants to Constrain the Initial State in PbPb collisions	Aryaa Dattamunsi
	Measurement of azimuthal anisotropy at high pT using subevent cumulants in pPb collisions	Rohit Kumar Singh
	Physics of heavy flavors and strangeness with a time-of-flight PID upgrade at CMS at the high-luminosity LHC	Zhenyu Chen

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

CMS summary

CMS.

CMS Preliminary

PbPb, 1.65 nb⁻¹ ($\sqrt{s_{NN}} = 5.02 \text{ TeV}$

(d)

Summary of CMS talk@ SQM2024 (Jun. 3-7, 2024, Strasbourg, France)

Section	Talk	Speaker
	Investigating bottom quark energy loss, hadronization, and B meson nuclear modification factors	Jhovanny Mejia Guisao
?	Observation of double J/psi production in pPb collisions	Stefanos Leontsinis
	Detailed study of the production of Y mesons in PbPb collisions	Prabhat Ranjan Pujahari
	Probing a new regime of ultra-dense gluonic matter using high-energy photons	Pranjal Verma
1	Measurement of the multiplicity dependence of charm hadron production in pPb collisions	Austin Baty
2	Study of charm quark and QGP medium interactions via Lambda c and D0 production and collective flow	Soumik Chandra
3	Measuring the speed of sound in the QGP	Michael Murray
	Measurement of strange particle femtoscopic correlations	Raghunath Pradhan
	Hyperon polarization along the beam direction in pPb collisions	Chenyan Li
	Using Multivariate Cumulants to Constrain the Initial State in PbPb collisions	Aryaa Dattamunsi
	Measurement of azimuthal anisotropy at high pT using subevent cumulants in pPb collisions	Rohit Kumar Singh
	Physics of heavy flavors and strangeness with a time-of-flight PID upgrade at CMS at the high-luminosity LHC	Zhenyu Chen

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Measurement of the multiplicity dependence of charm hadron production in pPb collisions

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Motivation of quarkonia study

Why are they important ?

- Heavy quarks/quarkonoium are mostly produced in the early stage of heavy ion collisions
- Heavy quark -> scale separation -> Heavy Quark Effect Theory

Quarkonia suppression has been considered as a smoking gun of the QGP (Matsui, Satz at 1986, ...) From yield and distribution -> deduce in-medium properties and infer the fundamental interaction in QCD matter !

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Suppression of quarkonia excited states

• Quarkonia suppressed in AA collisions

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Ø

Suppression of quarkonia excited states

- Quarkonia suppressed in AA collisions
- Suppression of excited states also seen in small systems

(a)

Suppression of quarkonia excited states

- Quarkonia suppressed in AA collisions
- Suppression of excited states also seen in small systems
- Co-moving particles break up excited states more easily than ground states?
 - Studies of Υ (nS) support this picture

Vs.

 Suppression should scale with comover density

Cold nuclear matter effects

- Nuclear PDFs (Parton Distribution Functions)
- Color Glass Condensate (CGC) Gluon saturation
 - high gluon occupation numbers can affect production
- Cronin effect
 - broadening of p_T spectra due to NN interactions in nucleus
- Nuclear absorption
 - disassociation of a bound state passing through a nucleus
- Parton energy loss
 - elastic scattering when moving through the nucleus before hard scattering
- <u>Comover absorption</u>
 - hadrons propagating together with the bound state interact with it

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Charmonia and comover effect

- What about charmonia? weakly bound excited state
 - Should be more sensitive to comover effects
- Initial studies performed in pAu, dAu, pPb vs N_{col} inconclusive

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Recent measurement

- LHCb measurements rapidity dependence of excited state suppression?
- ALICE measurements study dependence on comover density directly
- Interpretation limited by large uncertainties in both cases
 - Comover effect expected only for prompt charmonia
 - Need prompt/non-prompt separation!

Analysis range and observable of interest

Normalised $\sigma_{\psi(2S),n} / \sigma_{J/\psi,n} = \frac{\sigma_{\psi(2S),n} / \sigma_{J/\psi,n}}{\sum_{n} \sigma_{\psi(2S),n} / \sum_{n} \sigma_{J/\psi,n}}$

- Normalized ratio cancels acceptance, shadowing effects
- Dimuon range is limited by the single muon acceptance

g)

13

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Invariant mass peak

- Clear J/ ψ and ψ (2S) peaks in both forward/backward regions
- Analysis mainly limited by statistics
- Separation of prompt and nonprompt components with proper decay length

(d)

14

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

- Clear slope for prompt data
- No slope for nonprompt data

- Clear slope for prompt data
- No slope for nonprompt data

High p_T vs. Low p_T

 Hint of stronger
 dependence for prompt in
 Pb-going side than in pgoing side

- Limited by statistical precision

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Combined high-p_T results

- + 5.9 σ deviation fron flat line for prompt
- Observation of multiplicity dependence of $\sigma_{\psi\text{(2S)}}$ / $\sigma_{\text{J}/\psi}$ in pPb
- No clear rapidity dependence
- Nonprompt measurements consistent with zero

Comparison to ALICE results

- CMS prompt data vs. ALICE inclusive data (prompt + nonprompt)
- y_{CM} and p_{T} ranges slightly different but results are consistent within uncertainties

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Comparison to theory

(d)

- Comparison to model including comover interactions
- Reasonable agreement in p-going side
- Less suppression in Pb-going side compared to model

Partial summary

- First observation of multiplicity-dependence of prompt $\sigma_{\psi(2S)} / \sigma_{J/\psi}$ in pPb
- Nonprompt ratio consistent with unity •
- Hint of rapidity dependence at lower p_T
- Supports picture where suppression increases with comover density
- Data constrain hadronization models of charm hadrons in small systems •

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Reconstruction of Λ_c (lambda c) and D⁰

All possible combinations of three (two) charged tracks in an event are considered for pp and PbPb

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Mass distribution of Λ_{c} in PbPb

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

28

(2024) 128

JHEP 01

Prompt $\Lambda_c^+ R_{AA}$

- □ Larger suppression of Λ_c^+ production for central PbPb collisions
- □ R_{AA} decreases from low p_T up to ~14 GeV/c, then increases for higher p_T
- Similar trend to other heavy flavor measurements. but larger than D⁰
 - $> D^0 R_{AA}$ minimum at $p_T \sim 9 \text{ GeV/c}$

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

29

Prompt $\Lambda_c^+ R_{AA}$

- □ Larger suppression of Λ_c^+ production for central PbPb collisions
- □ R_{AA} decreases from low p_T up to ~14 GeV/c, then increases for higher p_T
- Similar trend to other heavy flavor measurements. but larger than D⁰
 - $> D^0 R_{AA}$ minimum at $p_T \sim 9 \text{ GeV/c}$

30

(d)

Prompt Λ_c^+/D^0 in pp

- PYTHIA8+CR2 predictions consistent with pp data for $p_T < 10 \text{ GeV/c}$, systematically lower for p_T range 10-30 GeV/c.
- Catania model including both coalescence and fragmentation consistent with data for $p_T < 10$ GeV/c.
- TAMU model using statistical hadronization approach and including excited charmed baryon states beyond the PDG describes the data reasonably

CMS

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

31

g)

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Coalescence? Fragmentation?

dnc,b

Fragmentation: Break up of heavy-flavor quark as in e++e⁻ collisions (also expected in pp collisions)

Jinjoo Seo's slide

33

26 APR 2023

Jinjoo Seo

r hadron production

Coalescence: Combitaion of quarks close in phase space

 $\rightarrow c'b' \otimes D_{c'b' \rightarrow h}$

Fragmentation

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

(B)

In-medium energy loss of beauty quarks

Updated B⁺ measurement more precise than calculations uncertainties at high p_T

Updated B_s measurement consistent with different model approaches

Energy loss : Beauty vs. Lighter flavors

- Suppression of B^+ and B_s similar to lighter hadrons at high p_{T}
- reference of parton energy loss
- R_{AA} of fully-reconstructed hadrons from light to beauty flavor from CMS

Jhovanny Mejia Guisao

HF&Q, Tues. 09:50

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

- Speed of sound depends on relation of pressure to energy density
 - Sound travels faster in stiffer materials
- C_s is measured by the multiplicity and p_T

Entropy density (s), # of charged particles (N_{ch})

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

(d)

- Correlation between average p_T of charged particles and chargedparticle multiplicity
- Steep rising trend matching the hydrodynamic model predictions (TRAJECTUM, By Gardim et al.)

The dashed line at the value of 1/3 corresponds to the upper limit for noninteracting, massless gas (``ideal gas") systems T_{eff} : the initial temperature that a uniform fluid at rest would have if it possessed the same amount of energy and entropy as the QGP fluid does when it reaches its freeze-out state, the point at which the quarks become bound into hadrons

- C_s^2 as a function of the effective temperature (T_{eff})
- CMS Data in good agreement with lattice QCD, hydrodynamic model (TRAJECTUM), and ALICE data
- It would be very interesting to look at lower energy data to map the temperature dependence of the speed of sound

Direct evidence for the formation of a deconfined phase at LHC energies

Observation of double J/ψ production in pPb collisions

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Introduction of the study

- High-energy collisions at LHC -> multiple interactions of protons and nuclei's underlying partonic constituents such as quarks and gluons
- Multiple Parton Interactions (MPI) -> simultaneous production of several particles with large p_T
- n high p_T particle production probability id proportional to the nth-product of the probabilities to independently produce each of them
- two high p_T particle production in double-parton scattering square of SPS probabilities

Signal extraction

Cross section measurement and systematics

•Measured fiducial cross section to be determined from single-J/ ψ MC-based efficiency in (p_T,y) plane

•
$$\sigma(\text{pPb} \to J/\psi J/\psi + X) = N_{\text{sig}}/(\epsilon \mathscr{L}_{\text{int}} \mathscr{B}^2_{J/\psi \to \mu\mu})$$

•considering only $J/\psi \rightarrow \mu\mu J/\psi \rightarrow \mu\mu$ mode

 $\bullet N_{\rm sig}/\varepsilon = \Sigma_i N_{\rm sig}^i/\varepsilon^i$

 $\cdot N_{\rm sig}^i$ is the per event signal weight

 ${\scriptstyle \bullet} \epsilon^i = \epsilon^i_{\mu\mu,1} \epsilon^i_{\mu\mu,2}$ is the product of the two J/ ψ efficiencies

 $\bullet \epsilon = 62.1 \%$

Source of uncertainty	$\sigma(\text{pPb} \rightarrow J/\psi J/\psi + X)$
J/ ψ meson signal shape	4.0%
Dimuon continuum background shape	2.5%
Luminosity	3.5%
Branching fraction	1.1%
Scale factors	1.3%
Total	6.1%

Partial summary

•First observation of the associated production of two J/ ψ mesons in pPb at $\sqrt{s_{NN}}$ = 8.16 TeV and measurement of the fiducial cross sections

- $\sigma_{\text{SPS}}^{\text{pPb}\rightarrow\text{J/}\psi\text{J/}\psi+X} = 16.5 \pm 10.8 \text{ (stat)} \pm 0.1 \text{ (syst) nb}$
- • $\sigma_{\text{DPS}}^{\text{pPb}\rightarrow\text{J/}\psi\text{J/}\psi+X} = 5.4 \pm 6.2 \text{ (stat)} \pm 0.4 \text{ (syst) nb}$
- •extraction of σ_{eff} lower limit
 - $\bullet\sigma_{\rm eff}>1.0\,{\rm mb}$ at 95% CL
- •Future pPb data will provide more accurate $\sigma_{\rm eff}$ extractions that can help clarify the observed span of $\sigma_{\rm eff}$ in pp collisions.

CMS Preliminary

 CMS, $\sqrt{s_{NN}}$ =8.16 TeV, $J/\psi+J/\psi$

 CMS, \sqrt{s} =13 TeV, $J/\psi+J/\psi+J/\psi$ Nat. Phys. 19 (2023) 338

 CMS*, \sqrt{s} =7 TeV, $J/\psi+J/\psi$ Phys. Rept. 889 (2020) 1

ATLAS, Vs=8 TeV, J/\u01c0+J/\u01c0 D0. √s=1.96 TeV. J/ψ+J/ψ D0*, Vs=1.96 TeV, J/u+Y ATLAS*, √s=7 TeV, W+J/ψ ATLAS*, vs=8 TeV, Z+J/w ATLAS*, √s=8 TeV, Z+b→J/ψ D0, vs=1.96 TeV, y+b/c+2-jet D0. vs=1.96 TeV, y+3-jet D0, vs=1.96 TeV, 2-y+2-jet D0, vs=1.96 TeV, y+3-jet CDF, Vs=1.8 TeV, y+3-jet UA2, vs=640 GeV, 4-jet CDF, vs=1.8 TeV, 4-jet ATLAS, Vs=7 TeV, 4-jet CMS, Vs=7 TeV, 4-jet CMS, vs=13 TeV, 4-jet CMS, Vs=7 TeV, W+2-jet ATLAS, Vs=7 TeV, W+2-iet CMS, Vs=13 TeV, WW

Phys. Rept. 889 (2020) 1 Eur. Phys. J. C 77 (2017) 76 Phys. Rev. D 90 (2014) 111101 Phys. Rev. Lett. 117 (2016) 062001 Phys. Lett. B 781 (2018) 485 Phys. Rept. 889 (2020) 1 Nucl. Phys. B 916 (2017) 132 Phys. Rev. D 89 (2014) 072006 Phys. Rev. D 89 (2014) 072006 Phys. Rev. D 93 (2016) 052008 Phys. Rev. D 81 (2010) 052012 Phys. Rev. D 56 (1997) 3811 Phys. Lett. B 268 (1991) 145 Phys. Rev. D 47 (1993) 4857 JHEP 11 (2016) 110 Eur. Phys. J. C 76 (2016) 155 JHEP 01 (2022) 177 JHEP 03 (2014) 032 New J. Phys. 15 (2013) 033038 Phys. Rev. Lett. 131 (2023) 091803

46

(g)

NEW RESULT

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

Successful start of HI run 3 period

CMS Integrated Luminosity, PbPb, 2023, $\sqrt{\mathbf{s}_{NN}}=$ 5.36 TeV

• 5.36 TeV PbPb

- 1.683 nb⁻¹ data is certified
- In 2023, larger statistics of hadronic and UPC data
 - Expect more precise measurement for UPC

First results from run3 PbPb data (2022 test run, not 2023)

- Event generators not describing the data accurately
 - important input to tune MC for Run 3

Flow of LHC heavy ion program

Timeline updated from Jing Wang's overview @ SQM 2022

(d)

50

Detailed studies to draw a comprehensive picture of HIC

- Conditions of the system in the initial state
- Emerging properties and medium-induced effects
- Collectivity features in small collision systems
- Nature of exotic hadrons and rare phenomena

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

March 23-27, 2026 (+March 22 student's day)

For coming HP, CMS is preparing interesting results Stay tuned!

Hyunchul Kim (Chonnam National University) – HIM 2024/06 meeting, Jun. 21st. 2024

