Hamza Amar, Animesh Chatterjee For the protoDUNE-BSM group

Trigger development for BSM searches in ProtoDUNE

Long-Lived Particles (LLP) in SM

Long-Lived Particles(LLP) can travel macroscopic distances before decaying

Image taken from arXiv: 1903.04497

Their presence comes from conserved symmetries, feebly couplings, heavy mediators/hierarchy of mass scale, small phase space.

LLP in BSM can arise from many well motivated classes of theories

Need dedicated experiment to search for the long-lived particles to understand Unknown physics (BSM).

WHITE PAPER ON NEW OPPORTUNITIES AT THE **NEXT-GENERATION NEUTRINO EXPERIMENTS** (PART 1: BSM NEUTRINO PHYSICS AND DARK MATTER)

C.A. Argüelles¹, A.J. Aurisano², B. Batell³, J. Berger³, M. Bishai⁴, T. Boschi⁵, N. Byrnes⁶, A. CHATTERJEE⁶, A. CHODOS⁶, T. COAN⁷, Y. CUI⁸, A. DE GOUVÊA^{*} ⁹, P.B. DENTON⁴, A. DE ROECK^{* 10}, W. FLANAGAN¹¹, D.V. FORERO¹², R.P. GANDRAJULA¹³, A. HATZIKOUTELIS¹⁴, M. HOSTERT¹⁵, B. JONES⁶, B.J. KAYSER¹⁶, K.J. KELLY¹⁶, D. KIM¹⁷, J. KOPP^{10,18}, A. KUBIK¹⁹, K. LANG²⁰, I. LEPETIC²¹, P.A.N. MACHADO¹⁶, C.A. MOURA²², F. OLNESS⁶, J.C. PARK²³, S. PASCOLI¹⁵, S. PRAKASH¹², L. ROGERS⁶, I. SAFA²⁴, A. SCHNEIDER²⁴, K. SCHOLBERG²⁵, S. SHIN^{26,27}, I.M. SHOEMAKER²⁸, G. SINEV²⁵, B. SMITHERS⁶, A. SOUSA^{* 2}, Y. SUI²⁹, V. TAKHISTOV³⁰, J. THOMAS³¹, J. TODD², Y.-D. TSAI^{16,32}, Y.-T. TSAI³³, J. YU^{*6}, AND C. ZHANG⁴

***** Experimental evidence :

- *I* Dark matter
- **Meutrino masses**
- **Short-baseline anomalies**
- **Matter-antimatter** asymmetry
- **Gravitational interaction Dark sector e.tc.** e.t.c.

y BSM ?

[1907.08311]

* Theoretical motivation:

i Hierarchy problem

Flavor puzzle

Mature of neutrinos (Dirac or Majorana)

Strong CP Problem

BSM-Search @protoDUNE : Setup Pilar Coloma et.al. (JHEP 01 (2024) 134) Setup North area EHN1 Neutrino Platform

Important features :

* No decay volume (no neutrinos!)

* Very high energy proton

Meson yields* (per PoT):

K_L	π^0	η	η'	D	D_s	au
0.3	4.03	0.46	0.05	$4.8\cdot 10^{-4}$	$1.4\cdot 10^{-4}$	$7.4\cdot 10^{-6}$
	ρ	ω	ϕ	J/ψ	B	Υ
	0.54	0.53	0.019	$4.4\cdot 10^{-5}$	$1.2\cdot 10^{-7}$	$2.3\cdot 10^{-8}$

Expected number of events: Decay

Pilar Coloma et.al. (JHEP 01 (2024) 134)

$$\int dS \int dE_{\Psi} \mathcal{P}(c\tau_{\Psi}/m_{\Psi}, E_{\Psi}, \Omega_{\Psi}) \frac{dn^{M \to \Psi}}{dE_{\Psi}dS}$$
Model-dependent

Production and decay :

The best bounds for HNL between O(100) MeV - GeV scale come from fixed targets

Benchmark scenario : HNL

Pilar Coloma et.al. (JHEP 01 (2024) 134)

 $\nu_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i} + U_{\alpha 4} N$

 $\ell,
u, M'$

Sensitivities to HNL decays

Pilar Coloma et.al. (JHEP 01 (2024) 134)

 $\alpha = \mu$

 $\alpha = \tau$

Other Model independent searches Pilar Coloma et.al. (JHEP 01 (2024) 134)

Other phenomenological studies (Axion like, dark scalar) are ongoing

Trigger algorithms for BSM searches

To develop a suitable trigger algorithm based on directionality. What we need as a first step is:

- Image: Definition of a fiducial volume.
- Identification of the incoming direction of particles.
- \mathbf{V} Implementation of angular cuts.
- \mathbf{V} Use of adjacency algorithm could be also complementary to improve the reconstruction efficiency.

Trigger algorithms for BSM searches

To test the performance of the algorithm we will proceed as:

- If Estimation of the reconstructed cosmic ray rate coming from the beam halo direction.
- In Calculate the Efficiency for selecting muons from a particular direction:
 - From the algorithm output, a variable Purity can be retrieved as the fraction of events that corresponds to muons signatures with the intended direction.
 - If there is a CRT trigger, the BSM trigger will not acquire data when CRT trigger turns on.

First step:

- Modify the current algorithm that selects muons to select muons coming from a particular direction.
- Tested with VD Coldbox data and later, when NPO4 is filled.
- ✓ Timeline: 2 weeks.

Outlook and requirement of special trigger

- protoDUNE@SPS id ideal facilities fo will start data taking soon!
- Sensitivity to HNL and other physics cases look promising.
- We have recently formed a group (Theorist and Experimentalist) to understand all the related issues
- ☑ In process of developing beam line simulation, detector simulation and background.
- ☑ One of the key aspect will be to develop a special trigger to acquire these kind of decay signature, to remove large cosmic and other background events.

If protoDUNE@SPS id ideal facilities for BSM searches as detectors are in place and

Backup

Trigger algorithms for BSM

Currently the work is focused on developing a *Trigger Activity* (TA) algorithm to select muons with a given direction to test the trigger algorithms for BSM searches:

- *Trigger Primitives* (TPs) with real data from the VD Coldbox are used to test the algorithm.
- Current trigger algorithm is based on Ο 2440 Michel adjacency. If TPs adjacency is above a electron 2420 threshold then a TA is generated. 2400 Most of the selected muons are 0 Channel 5380 - 53800 - 53800 - 53800 - 5380 - 53800 - 5380 - 5380 - 5380 - 5380 stopping muons. To select muons with a specific direction is Ο 2340 Muon needed to develop a new trigger algorithm. track 2320 2300 Directionality filter algorithm, essential for beam events. 2280 16000 18000 20000 22000 +1.063356735e17 Peak Time

Run 0.1000 Event Display: 003.000

5

Trigger algorithms for BSM

Figure 4.53: Horizontal muon triggered via early implementation of TriggerPrimitive \rightarrow TriggerCandidate chain during ProtoDUNE-I.