

Progress on the Magnetic Design of Superconducting Dipoles in Acceleration Stage

S. Fabbri¹, L. Bottura¹, T. Maiello², A. Pampaloni², et al

¹CERN, ²INFN – Genova

Accelerator Superconducting Magnets

Parameters

- 10 T at the center
- Rectangular aperture **30 mm x 100 mm**
- Field quality in good field region TBD (ex. $b_n < 10$) units

Considerations

- Attempt to use uniform technology throughout the collider complex
 - HTS windings (for robustness)
 - High current density (for cost reasons)
 - Operation at high temperature (for energy efficiency)

Parameter	Unit	
Minimum central field B_0	Т	10
Free aperture (height x width)	mm2	30x100
Field Quality limits	units	10, 50 (to be iterated with beam physics)
Field quality homogeneity (B1 change)	%	
Good Field region (height x width)	mm2	10 mm x 20 mm
Operating temperature		TBD
HTS tape dimensions		12 mm x ** mm
Magnet length		

- 10 T at 20 K, 10 K margin
- Rectangular aperture 50 mm x 80 mm
- Field quality better than 1.5%
- Straight section length: 550 mm
- Conductor volume / m (straight sections): 0.0154 m³/m

[1] Design and Plan of a 10 T HTS Energy Saving Dipole Magnet for the Italian Facility IRIS, MT-28

CEA-CERN HFM collaboration

 Demonstrator of metal-insulated ReBCO high field magnet coils Cea irfu Phase 1 2023-2025: Racetrack MI

IRIS 10 T energy saving Dipole ESMA

Thank you to discussions with those 6 stacks of 12 mm tape pancakes who designed the dipole magnet **9 mm gaps** for field quality ESMA (Lorenzo B., Stefano S., etc.) Metal insulated (SS) (not NI because 12 mm of long ramp up time) 9 mm • 1.5 % field quality (150 units) **No Iron** because it limits the optimal field quality to one field value - this magnet must be used at range of field structural values housing Cable section 10 50 100 150 [1] L. Rossi and others, "Design and Plan of a μm 10 T HTS Energy Saving Dipole Magnet for Metal the Italian Facility IRIS," in IEEE Transactions Cu stabilizer 129 on Applied Superconductivity, vol. 34, no. 5, YBCO pp. 1-6, Aug. 2024, Art no. 4602406, doi: Substrate 10.1109/TASC.2024.3355357

Conceptual Design (**Reminder:** previously ruled out more complex geometries)

2.1 Flat RT coils in midplane, with return leg on external part

2.2 Cloverleaf winding (novel)

Limited advantages (see [1])

Reference: IRIS -

https://indico.cern.ch/event/1220254/contributions/5270734/attachments/2607808/4507319/REBCO%20I.FAST%20CCT%20&%20IRIS%2010%20T%20HTS%20di pole%20at%20INFN.pdf

Add construction complexity

Accelerator Workshop May 2024

Radial Build

Magnet Design Status

Previously, single stacks of conductor were investigated in terms of cost, with some mechanical analysis (Annual Meeting)

Ongoing conceptual design: two approaches taking place:

- **1. Numerical optimization routine** looking at conductor volume, field quality (w/o iron) and critical current density limit
- 2. Optimization in ROXIE including Iron

First Goals:

- Optimization study on possible configurations as a function of cost, field quality, and complexity (number of racetracks, uniformity..)
- Mechanical analysis

Internationa UON Collider

Current assumption before update: 50 mm in x, 20 mm in y

 Update: good field region 20 mm in x, 10 mm in y (roughly 6σ beam)

Numerical Optimization Routine

An approach to best optimize **field quality** and **cost**

> Input constraints:

- Search resolution
- Space the RTs can exist in
- RT constraints (minimum length in x, thickness in y (12 mm))
- Current Density (<700 A/mm2)

> Limitations: does not include Iron

Numerical Optimization Routine - Method

I. Establish grid where RT pancakes are allowed to exist (Ex. 2 mm dx dy)

> [шш] , y [m]

> > X [mm]

eratc

II. Calculate field contribution from all grid elements

z [m]

III. Create all unique configurations of 2, 3, 4, 5, and 6 pancakes

240

120

- 0

-120 L

-240 I normalized I

⁻³⁶⁰ [units], _

-480

-600

-720

-840

BO

16

10 T

b5 [units], normalized B0

 A look at the contributions to higher order terms in this space

- B₀ = 10 T, Field quality < 10 units, 10 mm radius
- Fixed to have same inner radius, but not length, and max distance apart of 16 mm
- 9k solutions (for previous grid shown, J < 700 A/mm2)

	J [A/mm²]	Total Length (2 tracks) [mm]	Tot Cross Sec [mm ²]	No. of tapes [15 tapes in 1.85 mm]	b3	b5
1. Minimum Volume	691.8	110.0	5280.0	891.9	-9.1	-9.3
2. Best Field Quality	679.2	160.0	7680.0	1297.3	0.0	-2.1

COMSOL or ROXIE

Full stress, critical current and field calculations

Numerical Optimization Routine – **Example: 2 racetracks**

- B₀ = 10 T, field quality < 10 units,
 10 mm radius
- First 2 racetracks fixed to be the same, with a 10 mm gap. 3rd racetrack explored at a + 16 mm and +32 mm gap. Min length of 30 mm.
- 52k solutions (for previous grid shown, J < 700 A/mm2)

	J [A/mm²]	Total Length (2 tracks) [mm]	Tot Cross Sec [mm ²]	No. of tapes [15 tapes in 1.85 mm]	b3	b5
1. Minimum Volume	689.9	128.0	6144.0	1037.8	-9.5	-5.9
2. Best Field Quality	694.0	168.0	8064.0	1362.2	-0.0	-0.3

 To investigate further to understand advantages/disadvantages compared to 2 racetracks, etc.

➤ Goals going forward: finish study considering up to 6 racetracks, considering cost, field quality (*Updated), and engineering complexity → Integrate with ROXIE simulations.

Accelerator Workshop May 2024

