**RCS WORKSHOP 2024 - NORMAL-CONDUCTING MAGNETS / D. MOLL** 





# **NORMAL-CONDUCTING MAGNET ANALYSIS**

Dominik Moll, Laura D'Angelo, Herbert De Gersem: TEMF, TU Darmstadt, Germany Fulvio Boattini, Luca Bottura: CERN, Geneva, Switzerland Marco Breschi: University of Bologna, Italy

May 15, 2024









NORMAL-CONDUCTING MAGNETS

Challenges

- 1. Pulsed operation.
- 2. Non-linearities and multiple loss types.
- 3. Heat generation and cooling.
- 4. Linked to **power supply**.
- 5. Magnet as **3D** element.





NORMAL-CONDUCTING MAGNETS

Challenges

- 1. Pulsed operation.
- 2. Non-linearities and multiple loss types.
- 3. Heat generation and cooling.
- 4. Linked to **power supply**.
- 5. Magnet as 3D element.

Our software Pyrit

- ✓ Transient FEM solver.
- ✓ Appropriate material models.





NORMAL-CONDUCTING MAGNETS

Challenges

- 1. Pulsed operation.
- 2. Non-linearities and multiple loss types.
- 3. Heat generation and cooling.
- 4. Linked to **power supply**.
- 5. Magnet as **3D** element.

Our software Pyrit

- ✓ Transient FEM solver.
- ✓ Appropriate material models.
  - Room temperature working point. No cooling. Power supply = ideal current supply. 2D simulations.





NORMAL-CONDUCTING MAGNETS

Challenges

- 1. Pulsed operation.
- 2. Non-linearities and multiple loss types.
- 3. Heat generation and cooling.
- 4. Linked to power supply.
- 5. Magnet as 3D element.

#### Our software Pyrit

- ✓ Transient FEM solver.
- ✓ Appropriate material models.
  - Room temperature working point. No cooling.
  - Power supply = ideal current supply.
  - 2D simulations.
- Upcoming extensions:
  - Thermal loss model.
  - Circuit coupling.
  - Quasi-3D simulations.





### **NON-LINEARITIES AND LOSS TYPES**

## **IRON CORE**

#### NON-LINEARITIES AND MULTIPLE LOSS TYPES

- Focus on single centered slice (2D).
  - B optimal = no longitudinal component.
  - No currents in plane.
- Laminated **iron core**  $\Rightarrow$  conductivity  $\sigma_{Fe,z} = 0$ .
- Eddy current loss  $\dot{w} = \sigma_{Fe,z} \mathbf{E}^2 = 0$ ?







#### Minternational MUCol



## **IRON CORE**

#### NON-LINEARITIES AND MULTIPLE LOSS TYPES

- Focus on single centered slice (2D).
  - B optimal = no longitudinal component.
  - No currents in plane.
- Laminated **iron core**  $\Rightarrow$  conductivity  $\sigma_{Fe,z} = 0$ .
- Eddy current loss  $\dot{w} = \sigma_{Fe,z} \mathbf{E}^2 = 0$ ?
- $\Rightarrow$  Required: Accurate modeling of laminated iron core.



#### Minternational MUCol



## **IRON CORE**

#### NON-LINEARITIES AND MULTIPLE LOSS TYPES

- Focus on single centered slice (2D).
  - B optimal = no longitudinal component.
  - No currents in plane.
- Laminated **iron core**  $\Rightarrow$  conductivity  $\sigma_{Fe,z} = 0$ .
- Eddy current loss  $\dot{w} = \sigma_{Fe,z} \mathbf{E}^2 = 0$ ?
- $\Rightarrow$  Required: Accurate modeling of laminated iron core.

# Homogenization







### **IRON CORE HOMOGENIZATION**

#### NON-LINEARITIES AND MULTIPLE LOSS TYPES

Material model

$$\mathbf{H} = \mathbf{H}_{rev}(\mathbf{B}) + \mathbf{H}_{eddy}(\dot{\mathbf{B}}) + \mathbf{H}_{hyst}(\dot{\mathbf{B}}).$$



#### Reversible

$$\mathbf{H}_{rev}(\mathbf{B}) = 
u(\mathbf{B})\mathbf{B}.$$
  
 $w_{mag} = \int_{0}^{\mathbf{B}} 
u(\mathbf{B})\mathbf{B} \cdot d\mathbf{B}.$ 





### **IRON CORE HOMOGENIZATION**

#### NON-LINEARITIES AND MULTIPLE LOSS TYPES

Material model

$$\mathbf{H} = \mathbf{H}_{rev}(\mathbf{B}) + \mathbf{H}_{eddy}(\dot{\mathbf{B}}) + \mathbf{H}_{hyst}(\dot{\mathbf{B}}).$$

Reversible  $\mathbf{H}_{rev}(\mathbf{B}) = \nu(\mathbf{B})\mathbf{B}.$ 

 $w_{\text{mag}} = \int_{0}^{\mathbf{B}} \nu(\mathbf{B}) \mathbf{B} \cdot \mathrm{d}\mathbf{B}.$ 

Eddy current  $\mathbf{H}_{eddy}(\dot{\mathbf{B}}) = p_3 \dot{\mathbf{B}}.$ 

 $\dot{w}_{
m eddy}= p_3 |\dot{f B}|^2 \propto f^2.$ 







### **IRON CORE HOMOGENIZATION**

#### NON-LINEARITIES AND MULTIPLE LOSS TYPES

Material model

$$\mathbf{H} = \mathbf{H}_{\text{rev}}(\mathbf{B}) + \mathbf{H}_{\text{eddy}}(\dot{\mathbf{B}}) + \mathbf{H}_{\text{hyst}}(\dot{\mathbf{B}}).$$

Reversible

$$egin{aligned} \mathbf{H}_{\mathsf{rev}}(\mathbf{B}) &= 
u(\mathbf{B})\mathbf{B}. \ & \mathbf{w}_{\mathsf{mag}} &= \int_{0}^{\mathbf{B}} 
u(\mathbf{B})\mathbf{B}\cdot\mathrm{d}\mathbf{B}. \end{aligned}$$

Eddy current  $\mathbf{H}_{eddy}(\dot{\mathbf{B}}) = p_3 \dot{\mathbf{B}}.$ 

 $\dot{w}_{
m eddy}=p_3|\dot{\mathbf{B}}|^2\propto f^2.$ 









## **COPPER CONDUCTORS**

#### NON-LINEARITIES AND MULTIPLE LOSS TYPES



- Resistive loss homogeneously distributed.
- Induced loss highly localized.



































### **HEAT GENERATION AND COOLING**





#### STEADY STATE TEMPERATURE

Simplification, worst case:

- 1. Long conductors.
- 2. Only heat radiation.
  - $0 = P_{\rm loss} \sigma_B \epsilon A (T^4 T_{\rm air}^4)$
- 3. Air temperature constant.







#### STEADY STATE TEMPERATURE

Simplification, worst case:

- 1. Long conductors.
- 2. Only heat radiation.
  - $0 = P_{\rm loss} \sigma_B \epsilon A (T^4 T_{\rm air}^4)$
- 3. Air temperature constant.

$$\begin{aligned} \epsilon &= 0.2, \, T_{air} = 300 \, \text{K}, \, P_{\text{loss}} = \frac{1}{4} \frac{100 \, \text{J}}{200 \, \text{ms}}, \\ A &= 2 \cdot (140 \, \text{mm} + 7 \, \text{mm}) \cdot 1 \, \text{m} \\ \Rightarrow \quad T = 462 \, \text{K} \end{aligned}$$







#### STEADY STATE TEMPERATURE

High temperature working point of T = 462 K.

- $\Rightarrow$  Low conductivity.
- $\Rightarrow$  High loss.







#### STEADY STATE TEMPERATURE

High temperature working point of T = 462 K.

- $\Rightarrow$  Low conductivity.
- $\Rightarrow$  High loss.

Cooling required.







**TEMPERATURE RISE PER CYCLE** 

Average temperature rise (conductors).

$$\delta T_{\text{avg}} \approx \frac{W_{loss}}{k\gamma V} = \frac{7.5 \,\mathrm{mK}}{2.5 \,\mathrm{mK}}$$







**TEMPERATURE RISE PER CYCLE** 

Average temperature rise (conductors).

$$\delta T_{\rm avg} pprox rac{W_{loss}}{k\gamma V} = rac{7.5\,{
m mK}}{
m mK}$$

Simulation:  $\delta T_{\text{max}} \approx \underline{40 \text{ mK}}$ 

Temperature rise per cycle (mK)0.050.5550500







### **HOLLOW CONDUCTOR MODELS**



Low energy

Low loss

Not in scale! All models feature same air gap.





16

### **HOLLOW CONDUCTOR MODELS**







# **HOLLOW CONDUCTOR MODELS**



- Copper resistivity changes by  $\approx 0.4$  %/K.
- $\Rightarrow$  Resistivity change during one cycle below 0.2%.
- $\Rightarrow$  Material properties during one cycle almost unchanged.
- $\Rightarrow$  No thermal updates required for simulation of a single pulse.





### **MAGNET COMPARISON**







### **MAGNET COMPARISON**







#### NORMAL-CONDUCTING MAGNETS

- 1. **Pulsed** operation.  $\checkmark$
- 2. Non-linearities and multiple loss types.  $\checkmark$
- 3. Heat generation and cooling.
  - Small temperature rise per cycle.
- 4. Linked to **Power supply**.
  - · Circuit analysis with non-linear surrogates.
  - Field-circuit coupling.
- 5. Magnet as 3D element.
  - Quasi-3D FEM.



#### NORMAL-CONDUCTING MAGNETS

- 1. **Pulsed** operation. ✓
- 2. Non-linearities and multiple loss types.  $\checkmark$
- 3. Heat generation and cooling.
  - Small temperature rise per cycle.
- 4. Linked to **Power supply**.
  - Circuit analysis with non-linear surrogates.
  - Field-circuit coupling.
- 5. Magnet as 3D element.
  - Quasi-3D FEM.











#### NORMAL-CONDUCTING MAGNETS

- 1. **Pulsed** operation. ✓
- 2. Non-linearities and multiple loss types.  $\checkmark$
- 3. Heat generation and cooling.
  - Small temperature rise per cycle.
- 4. Linked to **Power supply**.
  - Circuit analysis with non-linear surrogates.
  - Field-circuit coupling.
- 5. Magnet as **3D** element.
  - Quasi-3D FEM.

Magnet surrogate representation with non-linear matrices **R** and **L**.

$$\mathbf{u} = \mathbf{R}\mathbf{I} + \mathbf{L}\frac{\mathrm{d}\mathbf{I}}{\mathrm{d}t}$$





#### NORMAL-CONDUCTING MAGNETS

- 1. **Pulsed** operation. ✓
- 2. Non-linearities and multiple loss types.  $\checkmark$
- 3. Heat generation and cooling.
  - Small temperature rise per cycle.
- 4. Linked to Power supply.
  - Circuit analysis with non-linear surrogates.
  - Field-circuit coupling.
- 5. Magnet as **3D** element.
  - Quasi-3D FEM.

#### 3D FEM or Quasi-3D approach:

$$\mathbf{A}_{3D}(x,y,z) = \underbrace{\sum_{k=1}^{N_l} \mathbf{A}_k^l(x,y) b_k^l(z)}_{\mathbf{A}_{\infty}^l \sim \mathbf{e}_z} + \underbrace{\sum_{n=1}^{N_t} \mathbf{A}_n^t(x,y) b_n^t(z)}_{\mathbf{A}_{\infty}^t \sim \mathbf{e}_x, \mathbf{e}_y}$$





## ACKNOWLEDGEMENT

This work is funded by the European Union (EU) within the Horizon Europe Framework Programme (Project MuCol, grant agreement 101094300).

Funded by the European Union (EU). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the EU or European Research Executive Agency (REA). Neither the EU nor the REA can be held responsible for them.



Funded by the European Union