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❖ Two Higgs Doublet Model with an unbroken 
discrete Z2 symmetry

❖ 𝜙1 acts as the normal SM Higgs doublet:

● h125 

❖ 𝜙2 introduces 3 new particles:
● H0    -     lightest particle
● A0 
● H±   

❖ 5 free parameters:

❖ Constraint: 

Theory and Motivation
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       Inert Doublet Model  (IDM)
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       Inert Doublet Model  (IDM) Z2 symmetry results in:

● IDM particles couple only to gauge bosons 

→ “inert”

● Pair production of inert scalars

● H is stable

H = Dark Matter candidate!

      Final States
  Electroweak Gauge Bosons + Missing Energy (Emiss)

➔ This is the first dedicated search 

for this model
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Final State

❖ e+e-/𝜇+𝜇- provides clean signature

❖ H0 particles produced mainly back to back

● Cancelling out of missing energy (Emiss)

● Reduced missing energy signature < 80 GeV 

❖ Initial studies showed worse sensitivity in on-shell Z 

region

❖ Off-shell Z region generally less explored
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        Dilepton + Missing Energy
p p → H0 H0 ɭ+ ɭ- p p → H0 H0 ɭ+ ɭ- 𝜈𝜈

 Dilepton + Reduced Emiss, off-shell Z 
region



Teddy Curtis

Final State

❖ e+e-/𝜇+𝜇- provides clean signature

❖ H0 particles produced mainly back to back

● Cancelling out of missing energy (Emiss)

● Reduced missing energy signature < 80 GeV 

❖ Initial studies showed worse sensitivity in on-shell Z 

region

❖ Off-shell Z region generally less explored

5

                      Parameter Scan
❖ Dominant process contains only SM couplings

● p p → H0 H0 ɭ+ ɭ- 𝜈𝜈 has little discrimination versus 

background and much smaller cross-section

❖ MH± , 𝜆2 and 𝜆345 have negligible effect on kinematics

❖ Only dependent on masses MH0 and MA0

❖ Scan over: MH0 ∊ [70, 130] GeV,

                  Δ(MA0, MH0) = MA0 - MH0 ∊ [20, 100] GeV

❖ Whilst maintaining MH0 < MA0 

        Dilepton + Missing Energy
p p → H0 H0 ɭ+ ɭ- p p → H0 H0 ɭ+ ɭ- 𝜈𝜈

 Dilepton + Reduced Emiss, off-shell Z 
region
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Preselections
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p p → H0 H0 ɭ+ ɭ- p p → H0 H0 ɭ+ ɭ- 𝜈𝜈

❖ Require opposite sign, same flavour e+e-/𝜇+𝜇- 

❖ Veto on any third lepton

❖ Dilepton invariant mass ∊ (20, 80) GeV

 Dilepton + Reduced Emiss, off-shell Z region

❖ Require 0 hadronic taus

❖ ≤ 1 jets

❖ 0 b-tagged jets

Preselections
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Background Modelling
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                  Backgrounds

❖ Currently backgrounds modelled with simulation

❖ Main backgrounds:

● Z/𝛾 → ɭ ɭ

● WW → ɭ ɭ 𝜈𝜈
● TT → ɭ ɭ 𝜈𝜈
● ZZ → ɭ ɭ 𝜈𝜈

Included the following systematic uncertainties:

❖ Electron reconstruction & identification

❖ Muon reconstruction & Isolation & identification

❖ Jet identification & energy corrections

       Corrections + Systematics
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Parametric Neural Network
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                                 pNN Overview

Instead of individual networks trained for each mass point:

❖ Single network that is optimal at all mass points

 Inputs:

❖ Event features (e.g. lepton PT, 𝜂, 𝜙)

❖ Mass point (MH0, MA0)

 PT    𝜂     𝜙    MH0   MA0

Parameterized Machine Learning for 
High-Energy Physics [1601.07913]

} Example input feature  [PT, 𝜂, 𝜙, MH0, MA0]

https://arxiv.org/pdf/1601.07913.pdf
https://arxiv.org/pdf/1601.07913.pdf
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                                 pNN Overview
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Interpolation:

❖ Smooth network output allows for interpolation between simulated mass points

● If trained on masses 100 & 110 GeV → Network can also discriminate at 105 GeV
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High-Energy Physics [1601.07913]
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Parametric Neural Network
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              Training

❖ Signal samples:

● Train on all signal samples simultaneously 

● Use the masses that signal was simulated with

● (MH0, MA0) ∊ SMC = {(80, 100), (120, 150), (70, 90)...}

❖ Background samples:

● These have no inherent IDM masses

● Assign random masses from SMC 

  Full training details shown in backup

Example batch:       Signal = class 1

- Class:    [ 1,              1,                1,           0,             0          ]

- Masses: [(80, 100), (120, 150), (70, 90), (80, 100), (70, 90) ]

Simulated masses Randomly assigned



Teddy Curtis

Parametric Neural Network
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             Interpolation Between Simulated Points

❖ Backgrounds:

● Network output is smooth

● To find background distribution at (MH0, MA0):

■ Evaluate simulation with mass inputs 

set to (MH0, MA0)

❖ Signal:

● To find signal distribution at (MH0, MA0) use 

cubic spline interpolation

❖ Previous studies shown interpolation performance 

comparable to single network performance
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Limit Setting
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                    Expected Limits on MH0 and MA0 

❖ Limits found by fitting to pNN output

● SR:  pNN output > 0.95

● Here, interpolated at every 1 GeV split

● Previous uncertainties included in fit

❖ Set 95% CL upper limits on IDM masses MH0 

and MA0 

❖ Need to simulate higher MH0
 signal

❖ Most sensitivity for mass splitting ~70 GeV

● MH0 excluded up to ~120 GeV

❖ Limits get worse for smaller mass splittings

● Leptons fall out of acceptance



Teddy Curtis

Summary

❖ This is the first dedicated search for the IDM

❖ Searching in the Dilepton + Emiss final state, off-shell Z region

● MH0 ∊ [70, 130] GeV,   Δ(MA0, MH0) = MA0 - MH0 ∊ [20, 100] GeV

❖ Parametric Neural Network to discriminate signal versus background

● Single network for whole parameter space

❖ Fitting to pNN output

14



Teddy Curtis

Summary

❖ This is the first dedicated search for the IDM

❖ Searching in the Dilepton + Emiss final state, off-shell Z region

● MH0 ∊ [70, 130] GeV,   Δ(MA0, MH0) = MA0 - MH0 ∊ [20, 100] GeV

❖ Parametric Neural Network to discriminate signal versus background

● Single network for whole parameter space

❖ Fitting to pNN output

15

Thanks!
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Backups
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Theory and Motivation

❖ 𝜆345 is the coupling constant for IDM to the higgs

❖ 𝜆2 is the quartic self coupling of the IDM particles to each other
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Preselection

❖ Showing base object selections

❖ All leptons used in this analysis need to pass these 
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Object Preselections:
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Preselection

19

● Lead lepton PT is 2 GeV above the trigger 
threshold
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Background Modelling
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● Currently only modelled with MC 

● Run II UL nanoAODv9 samples 

● Cross-sections taken from latest, 

highest-order, theory predictions[7]

● Correction factors:
○ All corrections taken from either nanoAOD or 

the jsonPOG-integration[8]

○ L1 Pre-firing

○ Electron Reconstruction, ID, Trigger

○ Muon ID, Isolation and Trigger

○ PU weight SF
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Initial Distributions

● Plots shown after initial object + dilepton selections

● Includes two IDM benchmark points:
○ mH = 80, mA = 120, mHch = 130

○ mH = 80, mA = 150, mHch = 160

● For 127fb-1 of data, expect ~ 100-300 IDM events

● Clear that cut-based analysis is not possible

● After initial selection, DY is overwhelming background
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Parametric Neural Network

❖ Model is 4 linear layers with leaky ReLU and dropout=0.1
● Parameterisation is done by concatenating input event features with the masses

● E.g. [phi, mH, mA]

❖ Weighted Cross-Entropy 

❖ Adam optimiser

❖ Trained for 10 epochs

❖ Learning rate = 1e-08

❖ Batch size = 500
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Limit Setting

❖ Smaller mass splittings (MA - MH) leads to softer leptons
● These fall out of acceptance 

● Showing normalised count

❖ Mass splitting of 90 GeV still has good acceptance with the dilepton invariant mass cut
● This point still has off-shell Z
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Summary

❖ Searching for the Inert Doublet Model in the Dilepton + MET final state, off-shell Z region

● MH ∊ [70, 130] GeV,   Δ(MA, MH) = MA - MH ∊ [20, 100] GeV

❖ Single Parametric Neural Network (pNN) optimises search at each mass point

❖ Limits found by fitting to pNN output
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Thanks!


