





 $t\bar{t}Z \rightarrow \bar{v}v$ 

By Michael Postill

With contributions from Zoe Earnshaw and Claudia Merlassino

#### Motivation

- $t\bar{t}Z \to \bar{v}v$  is particularly sensitive to specific EFT operators as the BR of  $Z \to \bar{v}v$  is much larger at 20% compared to  $Z \to \bar{e}e/\bar{\mu}\mu$  at 6%. This implies more events are in the tail end of the distribution. This leads to more potential in the EFT fits
- DM+top searches for DM production in association with the top have their two main backgrounds listed as ttbar and  $t\bar{t}Z \to \bar{v}v$ . [1]
- However,  $t\bar{t}Z \to \bar{v}v$  is difficult to measure with its high amount of background events.



# Overview of Analysis

• Planning to combine 3 channels (0L, 1L, 2L) cross section measurements to search for the  $t\bar{t}Z \to \bar{v}v$ .

• First inclusive measurement of  $t\bar{t}Z \rightarrow \bar{v}v$ .

Aiming to do a differential cross section measurement across MET using all 3 channels.

#### Content

Will overview strategy for all 3 channels

Focus on the OL channel DNN techniques.

• Results of the 3 channels

# Analysis strategy

- The 3 channels take inspiration from analyses targeting tt + missing energy in ATLAS SUSY searches. All 3 channels use variables from these analyses. The cuts used by these analyses also inspired various SR
- OL Channel is closely related to the tt + missing energy 0L SUSY search <u>Eur.</u>
   <u>Phys. J. C 80, 08 (2020) 737</u> but using additional selections (including defining a NN) to target ttZ
- 1L Channel takes inspiration from the tt + missing energy 1L SUSY search JHEP 04 (2021) 174, but with an NN built to target ttZ
- **2L** Channel is built from the  $t\bar{t}$  + missing energy 2L SUSY search <u>JHEP 04 (2021)</u> <u>165</u>, already contains a very well-defined  $t\bar{t}$  region so only minor optimisation was needed.

# Channel strategies (OL, 1L, 2L)

- **OL** used binary classifier to train on SUSY variables. During training, the DNN learns from the disruptions of these variables how to separate signal from background to produce a master variable with the best possible separation.
- 1L used a DNN tagger to tag the  $t\bar{t}Z > \bar{v}v$  and main 2 backgrounds(single top and ttbar2L) then used the background scores to define SRs and CRs.
- **2L** used optimisations to already well-defined ttZ regions for SR.







## Channel signal region Definitions

 mtbmin and mtbmax cuts in zero lepton remove most of the tt background allowing the DNN output Binary to then define the signal region.

0L

| variable                 | cut     |
|--------------------------|---------|
| pre-selection 0L cuts    | applied |
| mtbmin                   | > 200   |
| mtbmax                   | > 200   |
| met aligned jet cleaning | == 1    |
| DNN output Binary        | > 0.84  |

 The 1L uses low background DNN scores to define a single SR

1L

 Using MT2 the 2L channel was able to produce 4 highly pure but low stat signal regions

$$m_{\mathrm{T2}}(\boldsymbol{p}_{\mathrm{T}}^{\alpha},\boldsymbol{p}_{T}^{\beta},\boldsymbol{p}_{\mathrm{T}}^{\mathsf{miss}}) = \min_{\boldsymbol{q}_{\mathrm{T}}^{1} + \boldsymbol{q}_{\mathrm{T}}^{2} = \boldsymbol{p}_{\mathrm{T}}^{\mathsf{miss}}} \max(m_{\mathrm{T}}^{2}(\boldsymbol{p}_{\mathrm{T}}^{\alpha},\boldsymbol{q}_{\mathrm{T}}^{1}), m_{\mathrm{T}}^{2}(\boldsymbol{p}_{\mathrm{T}}^{\beta},\boldsymbol{q}_{T}^{2}))$$

| variable           | cut     |
|--------------------|---------|
| pre - selection_1L | applied |
| ttbar2L_Score      | < 0.05  |
| single_top_Score   | < 0.16  |
| nTau               | ==0     |

| variable   | cut       |
|------------|-----------|
| metsig     | > 14      |
| MT2ll      | > 110     |
| $pT_Boost$ | > 1.5     |
| MT2(SR1)   | 110 - 120 |
| MT2(SR2)   | 120 - 130 |
| MT2(SR3)   | 130 - 140 |
| MT2(SR4)   | > 140     |

## OL channel Analysis

- Use Area Under the Receiver
   Operating Characteristic Curve (AUC)
   to calculate variable importance from
   many SUSY variables.
- Variables which were highly correlated and ranked low on importance were removed to improve training
- DNN was trained in the OL with the mbtmin and mtbmax cuts from the previous slide applied
- Low impacting backgrounds like ttW and diboson were not included in the training





## OL channel Analysis

- The DNN has around 30% mislabelling between signal and background.
- Single top is the most stubborn background to remove, peaking later than the other backgrounds.
- Control and validation regions were built using the DNN's sample distributions



### Expectations

- SRs defined for all 3 channels, initial signal significance for individual channels looks promising.
- OL has 3CR for its 3 main backgrounds(ttbar,Z+jets,single top) defined. Assumes 10% systematics in SR
- 1L has 2 CR(ttbar2L, single top) defined.
- **2L** has 2 CR and 2 VR(ttbar,diboson) defined. Assumes 20% systematics in SR.
- Systematics are being processed.

#### **ATLAS** Work in Progress

| channel | Expected $\sigma$ | Signal/Background |
|---------|-------------------|-------------------|
| OL      | 3.05              | 0.58              |
| 1L      | 2.5-3             | 0.35              |
| 2L      | 2.75              | 0.86              |

| variable       | Events           |
|----------------|------------------|
| ${ m tar{t}Z}$ | $32.86 \pm 0.94$ |
| Z+jets         | $18.98 \pm 1.02$ |
| singletop      | $14.53 \pm 1.47$ |
| $\mid t ar{t}$ | $12.98 \pm 1.36$ |
| W+jets         | $5.83 \pm 1.17$  |
| ttW            | $2.78 \pm 0.16$  |
| diboson        | $1.44 \pm 0.16$  |
| Background     | $56.55 \pm 2.55$ |

All MC

| variable             | Events                  |
|----------------------|-------------------------|
| $t\bar{t}2L$         | $58.8839 \pm 2.34582$   |
| $-$ t $\bar{ m t}$ Z | $29.6201 \pm 0.837355$  |
| singletop            | $15.2314 \pm 1.42052$   |
| W+jets               | $7.597 \pm 1.3$         |
| multiboson           | $2.55076 \pm 0.177756$  |
| $t\bar{t}Z(qq/ll)$   | $0.937544 \pm 0.150339$ |
| Z+jets               | $0.346 \pm 0.095$       |
| total                | $115.167 \pm 3.16324$   |

|            | SR1               | SR2                 | SR3                 | SR4               |
|------------|-------------------|---------------------|---------------------|-------------------|
| ttbar2L    | $3.82 \pm 0.83$   | $2.23 \pm 0.49$     | $0.78 \pm 0.18$     | $1.11 \pm 0.23$   |
| Z+jets     | $0 \pm 0$         | $0 \pm 0$           | $0 \pm 0$           | $0 \pm 0$         |
| multiboson | $0.113 \pm 0.070$ | $0.169 \pm 0.060$   | $0.025 \pm 0.029$   | $1.73 \pm 0.36$   |
| ttX        | $0.340 \pm 0.098$ | $0.392 \pm 0.097$   | $0.44 \pm 0.10$     | $2.56 \pm 0.53$   |
| singletop  | $0.356 \pm 0.071$ | $4e - 06 \pm 0.046$ | $4e - 06 \pm 0.028$ | $0.527 \pm 0.083$ |
| ttZ(qq/II) | $0.067 \pm 0.065$ | $0.043 \pm 0.046$   | $0.062 \pm 0.029$   | $0.681 \pm 0.068$ |
| ttZ(vv)    | $1.39 \pm 0.12$   | $1.51 \pm 0.13$     | $1.37 \pm 0.13$     | $9.14 \pm 0.37$   |
| Total      | $6.08 \pm 1.05$   | $4.35 \pm 0.72$     | $2.68 \pm 0.40$     | $15.88 \pm 1.31$  |
|            |                   |                     |                     |                   |

**2**L

1L

01

#### Conclusion

- Have discussed the importance of  $t\bar{t}Z\to \bar{v}v$  in ATLAS's BSM searches and completeness of the Standard model.
- Have shown the Analysis techniques used by the 3 Channels using 2 different types of DNNs and one optimised region.
- We Have shown the process of optimising the OL DNN.
- We have shown the promising expectations of the 3 channels.
- Further processing of systematic uncertainties are needed before we can begin measuring the cross section.