$t\bar{t}Z \rightarrow \bar{v}v$ By Michael Postill With contributions from Zoe Earnshaw and Claudia Merlassino #### Motivation - $t\bar{t}Z \to \bar{v}v$ is particularly sensitive to specific EFT operators as the BR of $Z \to \bar{v}v$ is much larger at 20% compared to $Z \to \bar{e}e/\bar{\mu}\mu$ at 6%. This implies more events are in the tail end of the distribution. This leads to more potential in the EFT fits - DM+top searches for DM production in association with the top have their two main backgrounds listed as ttbar and $t\bar{t}Z \to \bar{v}v$. [1] - However, $t\bar{t}Z \to \bar{v}v$ is difficult to measure with its high amount of background events. # Overview of Analysis • Planning to combine 3 channels (0L, 1L, 2L) cross section measurements to search for the $t\bar{t}Z \to \bar{v}v$. • First inclusive measurement of $t\bar{t}Z \rightarrow \bar{v}v$. Aiming to do a differential cross section measurement across MET using all 3 channels. #### Content Will overview strategy for all 3 channels Focus on the OL channel DNN techniques. • Results of the 3 channels # Analysis strategy - The 3 channels take inspiration from analyses targeting tt + missing energy in ATLAS SUSY searches. All 3 channels use variables from these analyses. The cuts used by these analyses also inspired various SR - OL Channel is closely related to the tt + missing energy 0L SUSY search <u>Eur.</u> <u>Phys. J. C 80, 08 (2020) 737</u> but using additional selections (including defining a NN) to target ttZ - 1L Channel takes inspiration from the tt + missing energy 1L SUSY search JHEP 04 (2021) 174, but with an NN built to target ttZ - **2L** Channel is built from the $t\bar{t}$ + missing energy 2L SUSY search <u>JHEP 04 (2021)</u> <u>165</u>, already contains a very well-defined $t\bar{t}$ region so only minor optimisation was needed. # Channel strategies (OL, 1L, 2L) - **OL** used binary classifier to train on SUSY variables. During training, the DNN learns from the disruptions of these variables how to separate signal from background to produce a master variable with the best possible separation. - 1L used a DNN tagger to tag the $t\bar{t}Z > \bar{v}v$ and main 2 backgrounds(single top and ttbar2L) then used the background scores to define SRs and CRs. - **2L** used optimisations to already well-defined ttZ regions for SR. ## Channel signal region Definitions mtbmin and mtbmax cuts in zero lepton remove most of the tt background allowing the DNN output Binary to then define the signal region. 0L | variable | cut | |--------------------------|---------| | pre-selection 0L cuts | applied | | mtbmin | > 200 | | mtbmax | > 200 | | met aligned jet cleaning | == 1 | | DNN output Binary | > 0.84 | The 1L uses low background DNN scores to define a single SR 1L Using MT2 the 2L channel was able to produce 4 highly pure but low stat signal regions $$m_{\mathrm{T2}}(\boldsymbol{p}_{\mathrm{T}}^{\alpha},\boldsymbol{p}_{T}^{\beta},\boldsymbol{p}_{\mathrm{T}}^{\mathsf{miss}}) = \min_{\boldsymbol{q}_{\mathrm{T}}^{1} + \boldsymbol{q}_{\mathrm{T}}^{2} = \boldsymbol{p}_{\mathrm{T}}^{\mathsf{miss}}} \max(m_{\mathrm{T}}^{2}(\boldsymbol{p}_{\mathrm{T}}^{\alpha},\boldsymbol{q}_{\mathrm{T}}^{1}), m_{\mathrm{T}}^{2}(\boldsymbol{p}_{\mathrm{T}}^{\beta},\boldsymbol{q}_{T}^{2}))$$ | variable | cut | |--------------------|---------| | pre - selection_1L | applied | | ttbar2L_Score | < 0.05 | | single_top_Score | < 0.16 | | nTau | ==0 | | variable | cut | |------------|-----------| | metsig | > 14 | | MT2ll | > 110 | | pT_Boost | > 1.5 | | MT2(SR1) | 110 - 120 | | MT2(SR2) | 120 - 130 | | MT2(SR3) | 130 - 140 | | MT2(SR4) | > 140 | ## OL channel Analysis - Use Area Under the Receiver Operating Characteristic Curve (AUC) to calculate variable importance from many SUSY variables. - Variables which were highly correlated and ranked low on importance were removed to improve training - DNN was trained in the OL with the mbtmin and mtbmax cuts from the previous slide applied - Low impacting backgrounds like ttW and diboson were not included in the training ## OL channel Analysis - The DNN has around 30% mislabelling between signal and background. - Single top is the most stubborn background to remove, peaking later than the other backgrounds. - Control and validation regions were built using the DNN's sample distributions ### Expectations - SRs defined for all 3 channels, initial signal significance for individual channels looks promising. - OL has 3CR for its 3 main backgrounds(ttbar,Z+jets,single top) defined. Assumes 10% systematics in SR - 1L has 2 CR(ttbar2L, single top) defined. - **2L** has 2 CR and 2 VR(ttbar,diboson) defined. Assumes 20% systematics in SR. - Systematics are being processed. #### **ATLAS** Work in Progress | channel | Expected σ | Signal/Background | |---------|-------------------|-------------------| | OL | 3.05 | 0.58 | | 1L | 2.5-3 | 0.35 | | 2L | 2.75 | 0.86 | | variable | Events | |----------------|------------------| | ${ m tar{t}Z}$ | 32.86 ± 0.94 | | Z+jets | 18.98 ± 1.02 | | singletop | 14.53 ± 1.47 | | $\mid t ar{t}$ | 12.98 ± 1.36 | | W+jets | 5.83 ± 1.17 | | ttW | 2.78 ± 0.16 | | diboson | 1.44 ± 0.16 | | Background | 56.55 ± 2.55 | All MC | variable | Events | |----------------------|-------------------------| | $t\bar{t}2L$ | 58.8839 ± 2.34582 | | $-$ t $\bar{ m t}$ Z | 29.6201 ± 0.837355 | | singletop | 15.2314 ± 1.42052 | | W+jets | 7.597 ± 1.3 | | multiboson | 2.55076 ± 0.177756 | | $t\bar{t}Z(qq/ll)$ | 0.937544 ± 0.150339 | | Z+jets | 0.346 ± 0.095 | | total | 115.167 ± 3.16324 | | | SR1 | SR2 | SR3 | SR4 | |------------|-------------------|---------------------|---------------------|-------------------| | ttbar2L | 3.82 ± 0.83 | 2.23 ± 0.49 | 0.78 ± 0.18 | 1.11 ± 0.23 | | Z+jets | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | | multiboson | 0.113 ± 0.070 | 0.169 ± 0.060 | 0.025 ± 0.029 | 1.73 ± 0.36 | | ttX | 0.340 ± 0.098 | 0.392 ± 0.097 | 0.44 ± 0.10 | 2.56 ± 0.53 | | singletop | 0.356 ± 0.071 | $4e - 06 \pm 0.046$ | $4e - 06 \pm 0.028$ | 0.527 ± 0.083 | | ttZ(qq/II) | 0.067 ± 0.065 | 0.043 ± 0.046 | 0.062 ± 0.029 | 0.681 ± 0.068 | | ttZ(vv) | 1.39 ± 0.12 | 1.51 ± 0.13 | 1.37 ± 0.13 | 9.14 ± 0.37 | | Total | 6.08 ± 1.05 | 4.35 ± 0.72 | 2.68 ± 0.40 | 15.88 ± 1.31 | | | | | | | **2**L 1L 01 #### Conclusion - Have discussed the importance of $t\bar{t}Z\to \bar{v}v$ in ATLAS's BSM searches and completeness of the Standard model. - Have shown the Analysis techniques used by the 3 Channels using 2 different types of DNNs and one optimised region. - We Have shown the process of optimising the OL DNN. - We have shown the promising expectations of the 3 channels. - Further processing of systematic uncertainties are needed before we can begin measuring the cross section.