

Displaced lepton jets in ATLAS Run-2 & prospects for Run-3

Richards González

on behalf of the analysis teams

IOP APP HEP & NP

University of Liverpool, 8-11th April 2024

Why lepton jets?

- LJ signatures arise in models with a dark sector composed of unstable particles with MeV-GeV masses decaying to SM particles
- Light dark sectors as general possibility in colliders (minimal extensions, DM candidates, exotic signatures)
- At the LHC, light dark particles are produced with large boosts, causing their decay products to form jet-like structures

• Today:

- Searches for displaced LJ-like signatures
 in Run-2 data
- Different Higgs production modes:
 - ggF+WH production (2022)
 - <u>VBF production</u> (2023)
- Preliminary studies for Run-3

Lepton jet (LJ) = cluster of collimated light charged particles ($e^+e^-, \mu^+\mu^-, qq'$)

Search overview

FRVZ benchmark model

- $H \rightarrow 2\gamma_d + X$ via **Higgs & vector** portals
- SM final states $(\gamma_d \rightarrow \ell^+ \ell/qq) + E_T^{miss}$ signature
- Small coupling ε : long-lived γ_d
 - \circ 10⁻⁷ < ε < 10⁻⁵
- With $m_{vd} << m_H$: collimated decay
 - \circ $m_{vd} \sim O(10 \text{ MeV}) O(10 \text{ GeV})$
- Two searches using full Run-2 dataset:
 - o ggF+WH search (pub. 2022)
 - VBF search & full combination (pub. 2023)

Production modes FRVZ decay WH g 0000000g Q00000 **VBF** Thung d Final state: **Exploit signature of** different production modes Displaced LJs + E_{τ}^{miss} _{rd} Branching Ratio composition changes based on m_{vd} 10^{-1} **y**_d decay length m, [GeV]

Displaced LJ signatures

ID = Inner Detector HCAL = Hadronic Calorimeter

MS = Muon Spectrometer

Custom reconstructed objects

Dark Photon Jets (DPJ)

Sensitive to $oldsymbol{\gamma}_d$ decays after pixel detector

Packground	Collisional	Non-collisional		
Background	Multi-jet (e.g.,	Cosmic rays	Beam-induced	
signatures	QCD MJ, V+jets)	(µ DPJ)	(caloDPJ)	

μDPJ

 $\gamma_d \rightarrow \mu^+ \mu^-$

Decays outside ID acceptance

Pair of close-by MS tracks with no matching jets/tracks in the ID

calorimeter DPJ

caloDPJ

 $\gamma_d \rightarrow e^+ e^-/qq$

Targeting decays in HCAL

Low EM fraction jets with no matching MS tracks

NN-based taggers for DPJ quality

Cosmic-ray tagger (µDPJ)

- Based on track parameters and RPC timing information
- Per-track tagging classifying cosmic background against tracks originated by collision products

ATLAS — FRVZ (m_H, m_v)=(125, 0.4) GeV — FRVZ (m_H, m_v)=(800, 0.4) GeV — HAHM (m_H, m_v)=(125, 0.4) GeV — HOUSE (Empty BC) 10⁻¹ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Cosmic-ray Tagger Score

QCD tagger (cDPJ)

- 3D representations of jet energy built with calo-clusters
- Using energy deposit, ϕ and η in each calorimeter sampling
- CNN trained to classify QCD MJ from signal-like jets

BIB tagger (cDPJ)

- Using same information than QCD tagger
- CNN trained to classify
 Beam-Induced Background jets
 from signal-like jets

Trigger strategy

γ_d decaying to muons

Narrow Scan

Find muon in MS with p_{τ} >20 GeV

Scan for a second muon in narrow cone (ΔR =0.5) with lower p_{τ} threshold

Trimuon (3µ) MS-only

Find 3 muons in the MS with p_{τ} >6 GeV

Useful when two γ_d decay into muons

Events with single prompt leptons

Single lepton

Only used for WH production

Events with single prompt leptons coming from W decay

Trigger

=

What criteria is used to store events during data-taking?

γ_d leaving hits in the calorimeter

CalRatio

Narrow jets with $E_T > 30 \text{ GeV}$

No matching tracks in the ID

94% of jet energy deposited in HCAI

Events with sizable E_{τ}^{miss} signature

E_T miss

Only used for VBF production

Useful when triggering on the DPJ itself becomes difficult

Used with offline cut $E_{\tau}^{miss} > 100 \text{ GeV}$

Analysis strategy

Orthogonality between production modes achieved via:

- Dijet invariant mass (m_{ij}) selection Vetoing prompt leptons (ggF, VBF)

	ggF		WH		VBF				
# of DPJs	≥2				≥1				
Channel	2 µ	2c	c+ µ	1c	2c	c+ µ	μDPJ	caloDPJ low E _T ^{miss}	caloDPJ high E _T ^{miss}
Trigger	Narrow Scan/3 µ / CalRatio		Single lepton		NS/3 µ / E _T ^{miss}	E _T	miss		

Some VBF differences wrt. ggF/WH:

- Additional characterisation from VBF jets
- Lower DPJ multiplicity requirement for higher signal eff.
- E_{τ}^{miss} triggers for both DPJ signatures & no CalRatio

Data-driven background estimation: ABCD method

- Estimate expected QCD multi-jet background in each SR
 - Non-collisional backgrounds (CR, BIB) are suppressed before populating ABCD planes
 - Validations performed in BC & DC subplanes
 + additional validation regions (backup)

Estimation using ABCD

- Define plane using two uncorrelated variables
- Split plane in A, B, C & D regions:
 - o A = Signal-enriched
 - o B,C,D = Background-enriched
- Estimate N_A as:

$$N_A = \frac{N_B \times N_D}{N_C}$$

• e.g., ABCD planes for VBF low E_T^{miss} channel:

Variables

- 1. caloDPJ ID isolation Sum of p_T of tracks inside cone with R=0.5 around leading DPJ ID track
- 2. caloDPJ QCD tagger score

Unblinded results: anything new?

Unblinding

Populate signal regions with real data and check if we have found something new!

- Before unblinding:
 - Estimate expected exclusion limits on observable of interest $BR(H\rightarrow 2\gamma_d + X)$
- After unblinding:
 - O No new physics found!
 - All predictions in good agreement with observations
 - Estimate observed exclusion limits on observable of interest $BR(H \rightarrow 2\gamma_d + X)$

ggF & WH

Selection	Search channel	CRB	CRC	CRD	SR expected	SR observed
	2μ	55	61	389	317 ± 47	269
ggF	$c+\mu$	169	471	301	108 ± 13	110
	2c	97	1113	12146	1055 ± 82	1045
	с	1850	3011	155	93 ± 12	103
WH	$c+\mu$	30	49	31	19 ± 8	20
	2c	79	155	27	14 ± 5	15

VBF

Selection	CRB	CRC	CRD	SR expected	SR observed
SR_{μ}	44	22	21	42 ± 14	41
$\mathrm{SR}^\mathrm{L}_\mathrm{c}$	224	256	1123	983 ± 95	923
$\mathrm{SR}_\mathrm{c}^\mathrm{H}$	9	11	35	29 ± 14	46

Upper limits on BR(H \rightarrow 2 γ_d +X): e.g., VBF

Limits on single ct are extrapolated via lifetime reweighting to other ct values (backup)

Single ABCD limits for each channel and mass point

Observed upper limits on $BR(H\rightarrow 2\gamma_d + X)$ for each SR and overall VBF combination

Limits available for ggF & WH allow for full combination!

Combined limits on BR(H \rightarrow 2 γ_d +X): ggF+WH+VBF

- Limits on $BR(H \rightarrow 2\gamma_d + X)$ combining all ggF/WH/VBF SRs per γ_d mass point
- Combination of observed limits obtained for $m_{vd} \in [0.017, 15]$ GeV

- Higher sensitivity obtained from ggF channels
- VBF offers competitive sensitivity at low and high $c\tau_{\gamma d}$, particularly at high $m_{\gamma d}$ values

FRVZ vector portal interpretation: (ε , m_{vd}) limits

- 2D limits obtained as a function of m_{γd}
 & kinetic mixing parameter ε
- For each generated $(m_{yd}, c\tau_{yd})$ pair, the analysis efficiency is extrapolated to the 2D plane:
 - Along ε using the lifetime reweighting curves
 - Along m_{γd} according to γ_d branching ratio
- Combination renders strongest limits up-to-date for displaced LJ searches in ATLAS

Status and current work

Run-2

- No new physics for now!
- Observed limits obtained for all mass points in each signal region
- Full ggF+WH+VBF combined limits on $BR(H\rightarrow 2\gamma_d + X)$ at 95% CL
- $[\varepsilon, m_{vd}]$ limits for full combination \rightarrow Strongest ATLAS exclusion for displaced LJ searches!

Run-3: Preliminary studies

- Inclusive production analysis is ongoing!
- Several opportunities for improvement:

Explore HAHM signals

Study additional signal benchmark with low E_T^{miss} signature

Improved trigger strategy

Exploring NS+VBF for µDPJ signatures

CalRatio+VBF for caloDPJ signatures

Implement updated taggers

NN taggers trained in newest release for performance improval

Optimised SR definitions

Explore further observables for background rejection/prediction

Run-3: Trigger studies for VBF

- Three signatures crucially related to trigger selections:
 - Production mode (VBF jets)
 - Displaced reconstruction (LLPs)
 - Missing transverse energy
- VBF & LLP: Low trigger efficiency on their own
- Run-2 VBF: E_T^{miss} trigger forces offline cut that reduces sensitivity to models with low intrinsic E_T^{miss} (e.g., HAHM)
- Run-3 wishlist:
 - μDPJ: VBF + NarrowScan MS-only
 - Inclusive NS ready for stable beam this year
 - caloDPJ: VBF + CalRatio
 - Studying low m_{ii} L1 threshold
 - CalRatio development ongoing

Backup

Signal region definitions

ggF

Requirement / Region	$\mathrm{SR}_{2\mu}^{\mathrm{ggF}}$	SR_{2c}^{ggF}	$SR_{c+\mu}^{ggF}$
Number of µDPJs	2	0	1
Number of caloDPJs	0	2	1
Tri-muon MS-only trigger	yes	-	-
Muon narrow-scan trigger	yes	-	yes
CalRatio trigger	-	yes	_
$ \Delta t_{\rm caloDPJs} $ [ns]	-	< 2.5	-
caloDPJ JVT	-	< 0.4	-
$\Delta\phi_{ ext{DPJ}}$	$> \pi/5$	$> \pi/5$	$> \pi/5$
BIB tagger score	-	> 0.2	> 0.2
$\max(\sum p_{\mathrm{T}})$ [GeV]	< 4.5	< 4.5	< 4.5
∏ QCD tagger	-	> 0.95	> 0.9

W	Н
• •	

Requirement / Region	SR_c^{WH}	$\mathrm{SR}_{\mathrm{2c}}^{\mathit{WH}}$	$\mathrm{SR}^{WH}_{\mathrm{c}+\mu}$
Number of μDPJs	0	0	1
Number of caloDPJs	1	2	1
Single-lepton trigger (μ, e)	yes	yes	yes
m _T [GeV]	> 120	-	-
$ t_{\rm caloDPJ} $ [ns]	< 4	< 4	< 4
Leading (far) caloDPJ width	< 0.08	< 0.10 (0.15)	< 0.1
caloDPJ p _T [GeV]	> 30	-	-
JVT	< 0.6	< 0.6	< 0.6
$\min(\Delta\phi)$	$< 3\pi/5$	$< 3\pi/10$	$<7\pi/20$
min(QCD tagger)	> 0.99	> 0.91	> 0.9

Requirement / Region	SR_{μ}	$\mathrm{SR}_\mathrm{c}^\mathrm{L/H}$
Number of DPJs	≥ 1	≥ 1
Leading DPJ type	$\mu \mathrm{DPJ}$	caloDPJ
	$E_{ m T}^{ m miss}$	
Trigger	Tri-muon MS-only	$E_{ m T}^{ m miss}$
	Muon narrow-scan	
$p_{\mathrm{T}}(\mathrm{jet}) \; [GeV]$	> 30	> 30
$N_{ m jet}$	≥ 2	≥ 2
$m_{ m jj} \; [GeV]$	≥ 1000	≥ 1000
$ \Delta\eta_{ m jj} $	> 3	> 3
$ \Delta\phi_{ m jj} $	< 2.5	< 2.5
N_ℓ	0	0
$N_{b ext{-jet}}$	0	0
$C_{ m DPJ}$	> 0.7	-
$\Delta\phi_{ m min}$	-	> 0.4
$E_{\mathrm{T}}^{\mathrm{miss}} [GeV]$	> 100	SR_c^L : [100, 225]
ET [Gev]	> 100	$SR_{c}^{H}: > 225$
$-\mu$ DPJ charge—	0	-
caloDPJ tagger	-	> 0.9
$\sum_{\Delta R=0.5} p_{\rm T} \; [{\rm GeV}]$	< 2	< 2

Systematic uncertainties

- ABCD method syst. uncertainty obtained by propagating the stat. uncertainty in the CRs
- Experimental uncerts. are evaluated from data/MC differences in the DPJ reconstruction and NN taggers
 - Muon uncertainties: Reconstruction of close-by muon, evaluated using a tag-and-probe method on $J/\Psi \rightarrow \mu\mu$ as function of ΔR_{IIII}
 - Normalisation uncerts.: Luminosity and pile-up reweighting
 - NN taggers: Set of weights is extracted from $Z \rightarrow \mu\mu$ or dijet samples and propagated to signal samples to cover MC/data differences
 - **Triggers:** Same close-by muon tag-and-probe approach is adapted to *trimuon* and *NarrowScan* triggers. *MET trigger* uncertainty obtained by propagating 100% of scale factors uncertainty
 - Jet energy resolution and energy scale are considered, plus additional jet energy scale uncert. for low EM fraction jets

Displaced LJs VBF

- First ATLAS search using VBF production
- Analysis performed for combination with previous ggF/WH iteration

- Combination renders strongest limits up-to-date for displaced LJs searches in ATLAS
- Analysis presented in EPS-HEP 2023
- Paper submitted to EPJC on Nov/2023
- Inclusive production study for Run-3 is on the way!

Combination with observed ggF/WH limits

BR(H\rightarrow2\gamma_d+X) combined limits: ggF+WH+VBF

FRVZ vector portal interpretation: (ϵ , m_{yd}) limits

- For each generated (m_{γd}, cτ_{γd}) pair, the analysis efficiency is extrapolated to the 2D plane:
 - Along ε using the lifetime reweighting curves
 - Along m_{vd} according to γ_d branching ratio
- 2D limits are obtained doing a simultaneous fit of the available ggF/WH/VBF analysis channels in a $(m_{vd}, c\tau_{vd})$ grid
- The final limit is obtained by running a linear interpolation between the results from each simultaneous fit

VBF analysis

VBF analysis strategy

(1) Pre-selection

• VBF jets selection:

At least two jets with $p_T > 30 \text{ GeV}$ $m_{jj} > 1 \text{ TeV} \quad |\Delta \eta_{jj}| > 3 \quad |\Delta \Phi_{jj}| < 2.5$

• Trigger:

 μ DPJ channel \rightarrow NarrowScan || Trimuon || E_T^{miss} caloDPJ channel \rightarrow E_T^{miss}

- Lepton veto (orthogonal to WH)
- b-jet veto (targeting t-quark decays)
- Further channel-specific cuts:
 - Reduce background
 - Trigger-related
 - DPJ quality cuts

(2) Per-DPJ type selection

• Inclusive DPJ selection:

 μ DPJ channel \rightarrow Leading DPJ is μ DPJ caloDPJ channel \rightarrow Leading DPJ is caloDPJ

(3) NN tagger cuts

Taggers implemented in ggF/WH public analysis:

 μ DPJ channel \rightarrow Reject cosmic ray muons caloDPJ channel \rightarrow Reject QCD & BIB jets

(4) Data-driven background estimate

 ABCD method to estimate multijet background in signal regions

VBF - Trigger strategy

Chain	Triggering on	Final state	Name	Year
Narrow Scan	Long-lived particles	µ DPJ	HLT_mu20_msonly_mu6noL1_msonly_nscan05 HLT_mu20_msonly_mu10noL1_msonly_nscan05_noComb HLT_mu20_msonly_mu15noL1_msonly_nscan05_noComb HLT_mu20_msonly_iloosems_mu6noL1_msonly_nscan05_L1MU20_J40 HLT_mu20_msonly_iloosems_mu6noL1_msonly_nscan05_L1MU20_XE30 HLT_mu6_dRl1_mu20_msonly_iloosems_mu6noL1_dRl1_msonly	2015 2016 2016 2017/18 2017/18 2017/18
Trimuon	MS-only muons		HLT_3mu6_msonly	2015 2016 2017 2018
MET	E _T miss	μDPJ & caloDPJ	HLT_xe70 HLT_xe90_mht_L1XE50 HLT_xe110_mht_L1XE50 HLT_xe110_pufit_L1XE55 HLT_xe110_pufit_xe70_L1XE50	2015 2016 2016 2017 2018

VBF - Scale factors estimation for E_T^{miss} trigger

- In order to trigger on E_T^{miss} below the efficiency plateau, scale factors (SFs) are estimated for each data period by studying the data/MC ratio in $Z \rightarrow \mu\mu$ events
- All events required to pass:
 - VBF selection: $N_{iets}(p_T>30 \text{ GeV}) > 1$, $|\Delta \eta_{ii}| > 3$, $m_{ii} > 1 \text{ TeV}$
 - o Standard ATLAS Z→µµ selection
 - o Lowest unprescaled single lepton trigger
- Events in numerator also required to pass lowest unprescaled E_{τ}^{miss} trigger
- Per data period:
 - Turn-on curves plotted as a function of proxy offline E_T^{miss} = $E_T^{miss} + p_T^{\mu\mu}$
 - Data/MC ratio fitted with error function to obtain final SFs

Trigger type	Lowest Unprescaled Chain	Year
E _T miss	HLT_xe70 HLT_xe90_mht_L1XE50 HLT_xe110_mht_L1XE50 HLT_xe110_pufit_L1XE55 HLT_xe110_pufit_xe70_L1XE 50	2015 2016 2016 2017 2018
Single Muon	HLT_mu20_iloose_L1MU15 HLT_mu26_ivarmedium	2015 2016-201 8

Z→µµ MC vs. Run 2 Data

24

*no SF applied for 2015

VBF µDPJ channel

VBF µDPJ channel selection

(1) Trigger strategy

- NarrowScan targets µDPJs
- Trimuon helpful for $H \rightarrow 4\gamma_d + X$
- MET to gain sensitivity below 225 GeV

(2) **DPJ** quality cuts

- Cosmic ray tagger score greater than 0.5
- Veto MS crack region: $1.0 \le \eta \le 1.1$
- Veto combined muons

(3) Further cuts

- DPJ centrality (wrt. VBF jets) > 0.7
- $E_{\tau}^{miss} > 100 \text{ GeV}$

(4) ABCD SR definition

- μDPJ net charge = 0
- μDPJ ID track isolation (isoID) < 2 GeV

VBF caloDPJ channel

VBF caloDPJ channel selection

(1) Trigger strategy

 E_T^{miss} trigger plus further cut offers ~100% efficiency

(2) DPJ quality cuts

- Exclude calorimeter overlap region
- caloDPJ |timing| < 4 ns
- BIB tagger score > 0.2
- Jet Vertex tagger (JVT) score < 0.4
- QCD tagger score > 0.5

(3) Further cuts

- $100 < E_T^{miss} < 225 \text{ GeV} \mid\mid E_T^{miss} > 225 \text{ GeV}$ Minimum $|\Delta \Phi|$ (jet, E_T^{miss}) > 0.4

(4) ABCD SR definition

- cDPJ ID track isolation (isoID) < 2 GeV
- cDPJ QCD tagger score > 0.9

VBF caloDPJ channel breakdown

VBF caloDPJ channel breakdown

High MET SR

VBF jets cuts & $|\Delta \Phi_{jj}| < 2.5$ Lepton & b-jet vetos E_T^{miss} trigger $E_T^{miss} > 225$ GeV $\Delta \Phi(\text{jet}, E_T^{miss}) > 0.4$

Leading DPJ is caloDPJ caloDPJ gapRatio >0.9 caloDPJ BIBtagger score >0.2 caloDPJ |timing| <4 ns caloDPJ JVT score <0.4 caloDPJ QCD tagger score >0.5

caloDPJ ID isolation \rightarrow [0, 2] GeV caloDPJ QCD tagger score \rightarrow [0.9,1]

Low MET SR

VBF jets cuts & $|\Delta \Phi_{jj}| < 2.5$ Lepton & b-jet vetos E_T^{miss} trigger $E_T^{miss} \rightarrow [100, 225]$ GeV $\Delta \Phi(\text{jet}, E_T^{miss}) > 0.4$

Leading DPJ is caloDPJ caloDPJ gapRatio >0.9 caloDPJ BIBtagger score >0.2 caloDPJ |timing| <4 ns caloDPJ JVT score <0.4 caloDPJ QCD tagger score >0.5

caloDPJ ID isolation \rightarrow [0, 2] GeV caloDPJ QCD tagger score \rightarrow [0.9.1]

Orthogonal plane VR

VBF jets cuts & $|\Delta\Phi_{jj}|$ < 2.5 Lepton & b-jet vetos E_T^{miss} trigger E_T^{miss} > 100 GeV $\Delta\Phi(\text{jet}, E_T^{miss})$ < 0.4

Leading DPJ is caloDPJ caloDPJ gapRatio >0.9 caloDPJ BIBtagger score >0.2 caloDPJ |timing| <4 ns caloDPJ JVT score <0.4 caloDPJ QCD tagger score >0.5

caloDPJ ID isolation \rightarrow [0, 20] GeV caloDPJ QCD tagger score \rightarrow [0.8,1]

Subplanes VR

VBF jets cuts & $|\Delta \Phi_{jj}| < 2.5$ Lepton & b-jet vetos E_T^{miss} trigger $E_T^{miss} > 100 \text{ GeV}$ $\Delta \Phi (\text{jet}, E_T^{miss}) > 0.4$

Leading DPJ is caloDPJ caloDPJ gapRatio >0.9 caloDPJ BIBtagger score >0.2 caloDPJ |timing| <4 ns caloDPJ JVT score <0.4 caloDPJ QCD tagger score >0.5

3C

caloDPJ ID isolation \rightarrow [2, 20] GeV caloDPJ OCD tagger score \rightarrow [0.8.1]

DC

caloDPJ ID isolation \rightarrow [0, 20] GeV caloDPJ QCD tagger score \rightarrow [0.8,0.9]

More on VBF analysis

VBF - Lifetime reweighting

Validation

Using samples with m_{vd}=0.4 GeV

- Validation points agree with extrapolated curve for m_{yd} = 0.4 GeV within uncertainty
 - Disagreement in cDPJ low E_T^{miss}
 - Extra syst. uncert. considered in low E_T^{miss} SR for $c\tau$ >50 mm to take into account non-closure

FRVZ vector portal interpretation: (ε , m_{yd}) limits

- 1. For each generated $(m_{\gamma d}, c\tau_{\gamma d})$ pair, the analysis efficiency is extrapolated to the 2D plane:
 - a. Along $c\tau$ (ϵ) using the lifetime reweighting curves
 - b. Along m_{vd} according to γ_d branching ratio
- 2. 2D limits are obtained doing a simultaneous fit of the available ggF/WH/VBF analysis channels in a 100×100 grid in $(m_{vd}, c\tau_{vd})$
 - a. Contaminations from $\gamma_d \rightarrow e^+e^-$ in the µDPJ channels are not considered here
 - b. This step runs for each generated mass point
- 3. The final limit is obtained by running a linear interpolation between the results that are obtained in step (2)
- "Wobbly" contour due to low resolution used when running the fit framework. This was done with about 13K fits!

