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Outline
● Challenge: BSM searches increasingly depend on NN/BDT discriminants

○ Case Study 1: Vector-Like Quarks (VLQs) - MCBOT
■ Pheno study
■ ATLAS internal study

○ Case Study 2: SUSY

● Opportunity:
○ BSM signal grid reweighting
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Challenge:
reinterpretation
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Neural Network Preservation/Re-interpretation
● New and exciting topic!

○ Pheno recasting tools need to run models against a fast, simple preservation of the analysis
○ More and more analyses rely on neural nets
○ How do pheno/recasting community keep up?

● ATLAS SUSY group have largely led the way -
○ Published ONNX files for some of their analyses.

● Large topic of discussion at the recent Reinterpretation Forums[1]:
○ Talks discussed experienced in variety of recasting tools.
○ Status summarised in the “Les Houches Guidelines”[2]

● Neural Nets typically trained on data that has gone through full sim:
○ How valid is its use in Rivet (and similar - GAMBIT, MadAnalysis, CheckMate…), which use some 

form of smearing fastsim - Delphes or similar ?
○ Which variables are particularly affected?

● New ONNX interfaces in Rivet and Gambit
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[1] https://indico.cern.ch/event/1197680/
[2] arXiv:2312.14575v2  

https://indico.cern.ch/event/1197680/
https://arxiv.org/abs/2312.14575v2


VLQs - MCBOT
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VLQs:
MCBOT - “Multi-Class Boosted Object Tagger”
● Started off as an external reinterpretation of arXiv:2210.15413 and 

arXiv:1806.01762 (Atlas VLQ searches)
● Designed to tag reclustered (RC) jets as originating from Vector(W/Z)/Higgs/Top 

for use in VLQ analyses
○ RC Jets are large radius jets made by reclustering

anti-kt R=0.4 jets.

● DNN with 18 inputs…:
○ RC jet pT, mass, number of subjets.
○ pT, η, ɸ, E, b-tag for 3 leading (highest pT) subjets
○ N.b. b-tag is a potentially complicated input

● … and 4 outputs:
○ Probability of originating from Vector/Higgs/Top/Background

● Trained on variety of VLQ jets + QCD Multijet background. 6
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Replicating MCBOT validation plots -
2022 DNN score plots
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arXiv:2210.15413
Fig 3.

MG5 + Rivet



Replicating MCBOT validation plots -
2022 DNN score plots
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arXiv:2210.15413
Fig 3.

MG5 + Rivet



Replicating MCBOT validation plots -
2022 SR plots
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Truth-level study
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Quick comments on Truth-level study
● We compare truth/rivet to fully reconstructed ATLAS data:

○ Study carried out on very similar but more recent sample - can’t promise all the 
triggering/calibration/etc is identical, but it will be close.

● Using cuts that went into NN training/validation, not the analysis signal cuts.
○ Better stats
○ Easier to compare to NN plots in the paper

● Good results - clearly Gaussian around y = x
● Truth (parton level) and smeared/emulated both perform similarly.

● This is the best possible test of if reusing the NN on truth data destroys any 
crucial information
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Results (DNN output, VLQ)
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Results (DNN output binned, VLQ)
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ATLAS work in progress

N.b “Rivet” is 
truth level 
with detector 
emulation



Results (DNN output Z’ model), 
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Reinterpreting 
SUSY-2018-30
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SUSY-2018-30
● ATLAS search for SUSY in a final state with 

3 b-jets, used a DNN.
○ Made public via SimpleAnalysis (script was 

incredibly helpful!)
● Became the benchmark test for 

reinterpretation tools (Rivet, Gambit, MA5,  
CheckMATE, ++)

● Required a little bit of extra development 
inside Rivet:

○ pT dependent b-tagging efficiencies
○ Improved Jet and electron reco-emulation.

● Small things - e.g. ϕ convention (0->2π vs -π 
-> π) can break everything:

○ Good documentation is essential!
● Good, reliable results in Rivet for both NN 

and Cut’n’count signal regions

Cut Paper Rivet

0-lep 80.0 83.7

Δɸ4j
min≥0.6 52.5 54.6

2800-1400 NN Cut 21.7 23.9

2300-1000 NN Cut 21.3 23.3

Δɸ4j
min≥0.4 61.1 63.8

2100-1600 NN Cut 6.20 6.50

2000-1800 NN Cut 0.192 0.204
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Gbb Signal 
Model 
cutflow, 
(hepdata)

https://simpleanalysis.docs.cern.ch/
https://www.hepdata.net/record/ins2182381


Opportunity
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Reweighting BSM signal grids
● BSM searches often need big signal grids -

○ Computationally very expensive

● Possible solution: Generate a coarser grid, get to other points by reweighting.
● Enter the CARL method:

○ Use the classification score from a NN to obtain the likelihood ratio
○ Already used in some other contexts within ATLAS
○ Generate per-event weights - so all observables are available.
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ATLAS 
SUSY-2018-30, 
Supplementary 
figure 5b

https://web.archive.org/web/20190429060520id_/https://www.theoj.org/joss-papers/joss.00011/10.21105.joss.00011.pdf


Reweighting BSM signal grids
● Ran initial tests using “point-to-point” reweighting

○ Highlight importance of covering the entire domain.

● Do we prioritise nearest neighbours? 
● How do we ensure a broad distribution?

○ Use a nominal made up of points from
 ACROSS the distribution, let the network
 decide!
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ATLAS work in progress

ATLAS work in progress

Reweighting wider 
-> narrower vs.
narrower -> wider



Promising early results
● Made a development workflow

○ Based on 
(Pythia->Rivet->ROOT)->CARL

● Accurate reweighting across a 
large signal grid

● Fewer than half the grid points 
involved in training.

● Good performance includes 
variables not used in training.

● Weakest performance in narrowly 
spiked observables and discrete 
variables
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ATLAS work in progress

GeV GeV

Reweighting nominal point to a point in the 
signal grid, comparing two observables

Reweighting from the 
nominal combination (black 
stars) to the entire grid, 
plotting the event count in 
one of the signal bins 



Conclusions
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Conclusions

● Searches depending on ML are a challenge
○ But in most cases, one that can be overcome

■ If there is sufficient metadata, context and documentation
■ SimpleAnalysis/Rivet snippets are great for this!
■ See again the Les Houches guidelines

○ Reinterpretation tools are keen to try more examples
■ But the data (onnx/lwtnn files) needs to be public first!

● But - CARL based reweighting looks promising for reducing our computational 
load

○ May also have pheno applications?
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https://arxiv.org/abs/2312.14575v2


BONUS
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Input comparison (rivet)
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ATLAS work in progress



Input comparison (truth)
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ATLAS work in progress



DNN outputs, Rivet vs Truth 
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Efficiencies
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Why not just use efficiencies?
● Efficiencies don’t capture kinematics 

○ (seen even in the 2018 paper)
○ This becomes a serious problem if the NN is not the final cut.

● Ambiguities aplenty:
○ What to do in case of truth multi-tag?
○ Are miss-tag rates significant?
○ What even is a top quark (partonic tops)?

● Some variability across different new physics models (particularly in top tag)
● => Using the Net gives much better performance.
● But providing a detailed efficiency breakdown is 

still very useful 
○ (especially if the net can’t be provided)
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arXiv:1808.01771
Fig 4.

MG5 + Rivet
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