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Motivation

1) Some systematic uncertainties can be well estimated:

• Theory systematics 
• Two points systematics (~ 𝟏

𝟐
≅70% relative error)

• Related to stat. error of control measurements
• Related to size of MC event sample 

2) But they can also be quite uncertain:

“Uncertain systematics”        “Errors-on-errors”
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Goal:  Implement errors-on-
errors in a combination, non-
trivial consequences!

https://xkcd.com/2110/ 

see: G. Cowan, Eur. Phys. J. C (2019) 79:133; arXiv:1809.05778, 
Canonero, E., Brazzale, A.R. & Cowan, G. Eur. Phys. J. C 83, 1100 (2023)

https://link.springer.com/article/10.1140/epjc/s10052-019-6644-4
https://link.springer.com/article/10.1140/epjc/s10052-019-6644-4
https://link.springer.com/article/10.1140/epjc/s10052-023-12263-7


Formulation of the problem

• Suppose measurements 𝒚 have a probability density 𝑃(𝒚|𝝁, 𝜽)
• 𝝁 = Parameters of interest 
• 𝜽 = Nuisance parameters

• Auxiliary Measurements 𝒖 are used to provide info on nuisance parameters and are (often) 
assumed to be independently Gaussian distributed

• The resulting Likelihood is:

𝐿 𝝁, 𝜽 = 𝑃 𝒚, 𝒖 𝝁, 𝜽 = 𝑃 𝒚|𝝁, 𝜽 ×-
!

1
2𝜋𝜎"!

𝑒# "!#$! "/&'#!
"
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Can be a real measurement 
or just our best guess based 
on theoretical reasons
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• And the log Likelihood:

log 𝐿 𝝁, 𝜽 = log	𝑃 𝒚|𝝁, 𝜽 	−8
(𝒖𝒊 − 𝜽𝒊)𝟐

𝟐𝝈𝒖𝒊
𝟐
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Can be a real measurement 
or just our best guess based 
on theoretical reasons
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Can be a real measurement 
or just our best guess based 
on theoretical reasons

Let systematic errors be 
potentially uncertain!



Gamma Variance Model (GVM)

#
!

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝝈𝒖𝒊
𝟐#

!

(𝒖𝒊 − 𝜽𝒊)𝟐

𝟐𝝈𝒖𝒊
𝟐

• The original quadratic terms in the log likelihood replaced by logarithmic terms:
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𝛆 = error-on-error parameter

𝛆 = 0.3 means 30% 
uncertainty on 𝝈



#
!

(𝒖𝒊 − 𝜽𝒊)𝟐

𝟐𝝈𝒖𝒊
𝟐

• The original quadratic terms in the log likelihood replaced by logarithmic terms:

• Equivalent to switch from Gaussian constraints to Student’s t constraints for systematics: 
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𝛆 = error-on-error parameter

𝛆 = 0.3 means 30% 
uncertainty on 𝝈

#
!

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝝈𝒖𝒊
𝟐

Gamma Variance Model (GVM)



Sensitivity to outliers
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• Suppose we want to average 4 measurements all with statistical and syst errors equal to 1. Also 
assume they all have equal errors-on-errors 𝜺 (auxiliary measurements set to zero):

log 𝐿% 𝝁, 𝜽  = −
1
2
,
&

(𝑦& − 𝜇 − 𝜃&)'

𝜎(!
' −

1
2
,
&

1 +
1
2𝜺&'

log 1 + 2𝜺&'
𝜃&'

𝜎)!
'

• Suppose the measurements are internally compatible (no outliers), errors on errors have a small 
impact:
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Sensitivity to outliers
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1. The estimate of the mean does not change when we increase 𝜀

2. The size of the confidence interval for the mean only slightly increases, reflecting the 
extra degree of uncertainty introduced by errors-on-errors

3. If data are internally compatible results are only slightly modified

Sensitivity to outliers



• Suppose one of the measurements is an outlier
• If data are internally incompatible important changes can be observed
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Sensitivity to outliers
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Sensitivity to outliers

• Suppose one of the measurements is an outlier
• If data are internally incompatible important changes can be observed



1. With increasing 𝜀, the estimate of mean is pulled less strongly by the outlier 

2. The error bar grows more significantly: the GVM treats internal incompatibility as an 
additional source of uncertainty

3. The model is sensitive to internal compatibility of the data
16

Sensitivity to outliers
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Why a top combination?

1. Top-mass measurements are becoming 
systematics dominated

2. Potentially affected by QCD modelling systematics

3. Outliers may be present in future combination

7-8 TeV ATLAS-CMS top-quark mass combination 

Combination Paper: Arxiv:2402.08713

https://arxiv.org/abs/2402.08713
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1. Top-mass measurements are becoming 
systematics dominated

2. Potentially affected by QCD modelling systematics

3. Outliers may be present in future combinations

7-8 TeV ATLAS-CMS top-quark mass combination 

Combination Paper: Arxiv:2402.08713

Goals:

1. Demonstrate the generalization of the BLUE 
method to incorporate errors-on-errors

2. Prove that the original BLUE combination result is 
retrieved as errors-on-errors approach zero

3. Check if the combination is robust to the presence 
of errors-on-errors

https://arxiv.org/abs/2402.08713
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Why a top combination?

1. Top-mass measurements are becoming 
systematics dominated

2. Potentially affected by QCD modelling systematics

3. Outliers may be present in future combinations

7-8 TeV ATLAS-CMS top-quark mass combination 

Goals:

1. Demonstrate the generalization of the BLUE 
method to incorporate errors-on-errors

2. Prove that the original BLUE combination result is 
retrieved as errors-on-errors approach zero

3. Check if the combination is robust to the presence 
of errors-on-errors

Combination Paper: Arxiv:2402.08713
This is a parallel analysis based on public results

https://arxiv.org/abs/2402.08713


Impact of errors-on-errors on combination
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• We identify the eight largest systematic sources in the 
combination as potentially uncertain. 

• An error-on-error parameter, denoted as 𝜀0, is assigned 
to each of these systematics.

• We study how the central value and the confidence 
interval when one 𝜀0 is varied at time.

• This selection aims to show the impact of different 
assumptions on the combination, not to suggest which 
systematics should be treated as uncertain

From: Arxiv:2402.08713

https://arxiv.org/abs/2402.08713
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Impact of errors-on-errors on combination

1. As 𝜺𝒔 → 𝟎 the model reproduces BLUE results, as expected.

2. The central value is robust to the presence of uncertain systematic errors:
• The change in the central value remains always within 0.1 GeV, well within the confidence interval 

of approximately 0.3 GeV. 

3. The confidence intervals are also stable, though they exhibit non-negligible sensitivity to uncertainties in 
the LHC b-JES uncertainty.



Sensitivity to outliers
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• Show how the combination would be impacted if any of the combination inputs 
exhibited tension with the rest of the measurements. 

• Relevant for future LHC –Tevatron combinations, or for a LHC run 2 combination 
that includes the top mass measurement exploiting a leptonic invariant mass 
(arXiv:2209.00583).

• We introduce a fictitious measurement to explore GVM properties in these 
scenarios.

• We add a measurement with 𝑚1
234 = 174.5 GeV, statistical uncertainty of 0.4 

GeV, and global systematic uncertainty of 0.5 GeV.

https://arxiv.org/abs/2209.00583


23

• When all the errors-on-errors are zero, the central value of the combination is biased:

    172.52 GeV                               172.91 GeV

• If the new measurement is affected by large uncertain systematic, it shifts back to the original 
value

Sensitivity to outliers – central value
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• When all the errors-on-errors are zero, adding the new measurements shrinks the CI:

    0.33 GeV                               0.29 GeV

• If the new measurement is affected by large uncertain systematic, the CI inflates

• This is because the GVM treats the tension in the dataset as an additional source of uncertainty resulting in an 
inflated confidence interval

Sensitivity to outliers – confidence interval 



• The Gamma Variance Model (GVM) is a statistical framework designed to account for 
uncertainties in error parameters.

• GVM proves to be particularly relevant for combining measurements (e.g., top mass, W 
mass, Hubble constant, ...), especially when systematic uncertainties are dominant.

• GVM is sensitive to internal compatibility of input data
• If the data is internally compatible, the results are only marginally affected
• If the data is incompatible, errors-on-errors significantly alter both the central values and 

confidence intervals in a non-linear manner.

• GVM serves as a valuable tool for robustness studies, enabling researchers to 
determine whether an analysis is sensitive to uncertainties in a systematic source

Conclusions
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Thank you for your attention



Back-up slides 
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Gamma Distributions

𝒗~
𝜷𝜶

𝜞(𝜶)
𝒗𝜶;𝟏𝒆;𝜷𝒗

𝜶 =
𝟏
𝟒𝜺𝒊𝟐

	 𝜷 =
𝟏

𝟒𝜺𝒊𝟐𝝈𝒖𝒊
𝟐

• 𝝈𝒖𝒊 	Systematic Error

• 𝜺𝒊 =
𝟏
𝟐
	𝝈𝒗𝒊
𝝈𝒖𝒊
𝟐 ≅ 𝒗𝒊

𝝈𝒖𝒊
	 relative error on 𝝈𝒖𝒊: “Error on error”

• Treat the systematic variances 𝝈𝒖𝒊
𝟐  are adjustable parameters (nuisance 

parameter).
• Suppose their best estimates 𝒗𝒊 are gamma distributed:
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Gamma Variance Model (GVM)

• The likelihood is modified as follows: 

𝐿 𝝁, 𝜽, 𝝈𝒖𝒊
𝟐 = 𝑃 𝒚 𝝁, 𝜽 	×	H

!

1
2𝜋𝜎%"

𝑒& %"&'" #/)𝝈𝒖𝒊
𝟐
	×

𝜷𝒊
𝜶𝒊

𝜞(𝜶𝒊)
𝒗𝒊
𝜶𝒊&𝟏𝒆&𝜷𝒊𝒗𝒊

• One can profile over 𝝈𝒖𝒊
𝟐  in closed form:

log 𝐿/ 𝝁, 𝜽  =	 log 𝑃 𝒚|𝝁, 𝜽 −
1
2#

!

𝟏 +
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐
(𝒖𝒊 − 𝜽𝒊)𝟐

𝒗𝒊

• We call this model the Gamma Variance Model (GVM)

(see: G. Cowan, Eur. Phys. J. C (2019) 79:133; arXiv:1809.05778)



• Gamma distributions allow to parametrize distributions of positive 
defined variables (like estimates of variances)

• Using Gamma distributions it is possible to profile in close form over 
𝜎>? 

Motivation for the GVM
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• Gamma distributions include the case where the variance is estimate from 
a real dataset of control measurements:

𝑣! =
1

𝑛! − 1
& 𝑢!,# − (𝑢!

$	

• 𝑛 − 1 𝑣!/𝜎%!
$  follows a 𝜒&'($  distribution and 𝑣) a Gamma distribution 

with:
 

𝛼" =
𝑛" − 1
2

𝛽" =
𝑛" − 1
2𝜎#0

$

Motivation for the GVM
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• BLUE approach to combinations:

𝜒? =$
>

𝑦> − 𝜇 𝑉>@AB(𝑦@ − 𝜇)

𝑉>@ = 𝑉>@
(CDED) + 𝑉>@

(CFCD)

• 𝑉>@
(CDED): Statistical covariance matrix.

• 𝑉>@
(CFCD): Covariance matrix induced by systematic source.

• We assume the presence of a single systematic source. If multiple sources 
exist, simply sum over syst.

From BLUE to the Gamma Variance Model
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• Switch to a nuisance parameters approach:

𝜒? =$
>

𝑦> − 𝜇 − 𝜃> ?

𝜎>?
+$

>@

𝜃>𝐶>@AB𝜃@

𝐶>@ = 𝑉>@
(CFCD)

• Substitute quadratic term with log-constraint:

From BLUE to the Gamma Variance Model

$
>@

𝜽𝒊𝑪𝒊𝒋A𝟏𝜽𝒋 $
>

𝑵+
𝟏
𝟐𝜺𝒊𝟐

𝐥𝐨𝐠 𝟏 + 𝟐𝜺𝒊𝟐𝜽𝒊𝑪𝒊𝒋A𝟏𝜽𝒋



• 𝑛> = 1 + 1/2𝜖>?

• So, since for a two-points systematic 𝑛> = 2:

𝜖S = 1/√2 

Motivation for the GVM
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