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Overview

• Neutrino oscillation measurements 
• Neutrino - nucleus interactions 
• Our network 
• Results 
• Conclusions
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‣ Will see a large flux of 
neutrinos from beam at 
Fermilab, and atmospheric 
neutrinos. 

‣No detection of neutral 
particles.
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Neutrino-nucleus interactions
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→
Generate   events 
with energies from 0.2 - 6 GeV 
using NuWro. 

Use DUNE flux for beam 
neutrinos, flat flux for 
atmospherics. 

5 × 105 να(να)
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Dataset and Network
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Require minimum K.E. threshold, 
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Feed vector sum of 
particle-groups 4 momenta 
to fully connected layer 
regression network

Eν

ΣplepΣpproton Σpπ±Σpneutron Σpκ Σpγ Σpother

ϕνθν→

Dataset and Network



‣ Best resolution from DUNE Technical 
Design report is ~13%
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Results - Beam
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Results - Beam

‣ ‘Calorimetric’ method takes the sum 
of all visible energy in an event as 
neutrino energy.  

‣ Approximates design reports 
reasonably well.



‣ DNN applied to events with no 
neutron information improves on TDR 
resolution. 
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Results - Beam

‣ DNN applied to events with no 
neutron information improves on TDR 
resolution. 

‣ Adding highly smeared neutron 
energy information gives 1.5x 
increase in resolution. 

‣ Having access to full neutron 
momentum has little impact on 
network performance. 

‣ DNN has smaller bias than 
calorimetric method for no neutron 
case. Both methods perform well 
when neutron energy is provided.
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Results - Atmospherics

‣ Calorimetric gives reasonable energy 
and angular resolution.
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Results - Atmospherics

‣ Best energy(angle) resolution goes 
from 15%(9%) 7%(6%) in no neutron 
DNN case. 

‣ Adding neutron momentum 
information yields little improvement 
or network performance.

→
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Neutrino nucleus modelling dependence

‣ Different event generators use different 
models  discrepancies in final state 
particles 

‣ Attempt to reduce model dependence of 
network by grouping particle types. 

‣ Find network still performs well at higher 
energies, but isn’t robust below 1.5 GeV.

→
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Sensitivities (PRELIMINARY)

Sensitivities assuming 624 kt-MW-years of exposure: 6.5 years each of running in neutrino (FHC) and antineutrino (RHC) mode 
40-kt fiducial mass far detector, in an 120-GeV, 1.2 MW beam. 

= 0.58678 ± 0.014 ,  = 0.149 ± 0.0236 = 0.823795 = 7.4e-05 ± 2.1e-06 = 0.002494 θ12 θ13 θ23 Δm2
12 Δm2

13 δCP = − π/2
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Conclusions

Applying Deep Neural Network to final state particle information can 
significantly improve energy and angular resolution in LArTPCs

Could lead to an improvement in  sensitivity at DUNE, and a 
quicker achievement of a 5  measurement!

δcp
σ

Greatest gains made on Δm2
31

Network has some generator dependence due to neutrino                    
interaction modelling differences, but can still make                  
improvements at higher energies.
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Backups - loss plots

Label events with true neutrino energy 

Label events with true neutrino energy and direction 
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Backups - Energy distributions

Normalize by area of histogram 
Add gaussians to legend 

Make gaussians make more sense
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Smearing table



22

Anti-neutrinos


