DEEP UNDERGROUND NEUTRINO EXPERIMENT

Supernova triggering at DUNE from machine-learning
based clustering

Dennis Lindebaum
On behalf of the DUNE Collaboration
10.04.24

University of W
U] BRISTOL o —

/



Betelgeuse:
ALMA

(ESO/NAOJ/NRAO)/
B ete I g e u S e E. O'Gorman/P. Kervella

« Last year, a study [arXiv:2305.09732] used brightness oscillations to predict:

- “After carbon is exhausted (likely in less than ~ 300 years) in the core, a core-collapse
leading to a supernova explosion is expected in a few tens of years.”

* Not everyone agree with the conclusions [10.3847/2515-5172/acdb7a].

« 99% of SN energy is carried by
neutrinos of O(10MeV).

- Betelgeuse ~500ly (~150 pc) away

- More than 10° neutrinos expected in each
detector module of DUNE.

« Only one supernova burst (SN1987A) has been recorded to
date, from 51kpc away.

- 25 neutrinos recorded by Kamikande, IMB, and Baksan. SN1987A remnant captured by JWST
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https://arxiv.org/abs/2305.09732
https://dx.doi.org/10.3847/2515-5172/acdb7a

Supernova Physics

» Astrophysical phenomena:

- Early warning for optical telescopes (neutrinos escape a few hours before the first photons).

- Detalls of supernova models.

* Neutrino physics:

- Neutrino oscillation parameters, with matter
effects of high-density supernova matter.

- Mass ordering leaves a strong imprint
on the resulting flavour spectrum.
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https://arxiv.org/abs/1804.01877

Betelgeuse or Bust?

 Even in the best case, at most 10% chance of Betelgeuse going supernova during
lifetime of DUNE.

BUT
* Galactic supernova are expected 1-3 times per §1n‘-‘ g et —
century. i
« The edge of the Milky Way is ~25kpc away. 510
E10

« About 60 neutrino interactions expected per
module for a galactic supernova.
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* How many neutrino interactions must be incident 10 Distabe to supernova (ke

In a detector module to create a trigger? Expected number of neutrino interactions in DUNE
from a supernova burst. From arXiv:2011.06969
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https://arxiv.org/abs/2011.06969

Low energy clustering

* We have performed an example study on the performance which may be obtained by
machine learning methods.

* Network creates boxes where it predicts a neutrino
IS present.

« Many classical clustering algorithms produce “yes/no”
type results (without multiplicity).
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- E.g. DBScan takes a set of points, an gives each point a
cluster label
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 We want a like-for-like method to compare ML results to
classical clustering methods.

Example predictions
- Produce trigger chance from clustering produced by a neural

. . .. . network in blue, with
distribution and incident neutrino count. true neutrinG

interactions in green. Channel
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Multiplicity

« Standard clustering algorithms normally produce binomial clustering efficiencies.

- Each data point is assigned a cluster label.

* The neural network can produce
multiple predictions overlapping the
same region of space.

* Results in a multiplicity of predictions
per true incident neutrino.

* Probability may be a function of
neutrino energy.
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Supernova detection probability
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Supernova detection probability

* Probability of creating a trigger in a window is a function of the number of neutrino
detections in the window and the background count.

« Algorithms and parameters obtained from early low-background SN neutrino models
in DUNE.

 Classical clustering:
- 33% binomial efficiency
- 0.14 Hz background rate 3 oo
« Machine learning: 5 Comparison of a binomial
o Al clustering algorithm vs.
- 1.2 average multiplicity ML clustering based on
- 0.45 Hz background rate 02 early SN neutrino models.

Number of incident neutrinos

A
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Unknown SN incidence time

« So far, we have assumed every incident neutrino falls exactly within one 10s detection
window.

* In reality: neutrinos may be spread over
multiple windows. i
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Sliding window

« Background events are modelled with a Poisson — the probability of an event arriving
at time t is uniform
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* We generate windows by counting events within some time frame (10s).
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Sliding window
« Choosing to slide the window is equivalent to selecting a sample rate on the window

sum plot.

» Define “sliding time” as the time between subsequent windows.

10s between windows:
No triggering windows
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5s between windows (50% overlap):
We find a trigger!

 Increased sliding also increases the number of triggers.
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Sliding window — data driven

* Running with data driven parameters (0.1Hz fake rate, 9 count threshold)
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« Smaller time between
windows => more triggers

| | | 1 | | | |
0 10 20 30 40 50
Time/ms

12 10/04/24 Supernova triggering at DUNE from machine-learning based clustering Erﬁvlesriiﬁyooi m



Sliding window — data driven

* Monte-Carlo simulation performed was used to characterise the trigger rate as a
function of window sliding.

« Atrigger is generated if the number of clusters found in a window exceeds some
threshold. 2

* Reducing the time between window
measurements with fixed threshold
Increases the number of triggers.
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« To compensate — increase the threshold
required to trigger.

Average number of triggers
seen per month as a function of
time interval between windows.
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Sliding window

Supernova triggering
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Summary

* We can generate trigger chances from arbitrary clustering distributions.
- Compare machine learning vs. classical methods
« Supernova detection probabilities need to include the effect of unknown arrival times.

 Sliding windows can catch supernova bursts at unknown times, with a small efficiency
loss.

- Sliding windows also ensure we capture a supernova burst promptly. r\l [

« Sliding windows require trigger —

threshold adjustment

Sanford Underground
Research Facility

Fermilab

* Machine learning methods have the
potential to improve trigger chances,
but can have peculiar “multiplicity”
effects.
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