The QUEST Experiment

The Quantum Enhanced SpaceTime measurement experiment Interferometry for stochastic signal search

A. Patra

On Behalf of the GWLab team Gravity Exploration Institute School of Physics and Astronomy Cardiff University

IOP JOINT APP, HEPP and NP Conference, April 2024

Michelson Interferometer

Interfrometry and Gravitational Waves

 Gravitational waves signals from compact binary systems are ideal candidates to be detected by Interferometers.

Figure: LIGO Living observatory

What is QUEST?

 The QUEST experiment is an interferometric system designed to be sensitive to broadband stochastic or continuous space-time strain signals between 1MHz and 250MHz.

QUEST design - Power Recycled Michelson Interferometer

A Patra (Cardiff Uni) The QUEST Experiment April 2024 5/

QUEST design - Co-located Interferometers

QUEST design - Co-located Interferometers

 Shotnoise is not correlation between the measurements in the two PDs, but the common signal is. With averaging of the cross-correlation we can get better SNR of signal against shotnoise.

QUEST Science Goals

- Test for a class of Quantum Gravity theories that are a consequence of the Holographic principle. [see references]
- Search and exclusion of parameter space for Scalar Field Dark Matter candidates.
- Search for very high frequency continuous/stochastic Gravitational Waves.

QUEST - High Power and Squeezing

- The target shotnoise limited sensitivity for each interferometer is 2e-19 m/√Hz between 1 MHz and 250 MHz.
- To achieve this sensitivity the goal is to have 10 kW of circulating power in the interferometers and squeezing to suppress the shotnoise level by 6dB.

9/16

Current Commissioning Status

- The vacuum systems for the two interferometers are fully commissioned.
- The real-time control loops for frequency and length stabilization for the interferometers are also commissioned.
- The high frequency data acquisition and online FPGA based data processing and averaging pipeline is also fully commissioned.
- The squeezer and output mode cleaner for one interferometer are characterized and waiting to be integrated into the system.

10 / 16

Engineering Run Results

Commissioning Path Forward

- Increasing the circulating power in the interferometers and establishing an autolock scheme.
- Integrating squeezing light sources and observing the reduction of the shotnoise.
- Integrating output mode cleaners to filter the light at the output of the interferometers.
- Finally, conduct a full 1 million sec science run.

Future Plans

- For a future iteration of QUEST, interferometers with different geometries are being planned.
- Different angle between the arms and bent arms designs are being looked into to improve the coupling to spherical modes of a stochastic signal.
- Instead of a Homodyne readout scheme a photon counting scheme is being investigated to improve the statistics of averaging.

Acknowledgements

 QUEST is part of the Quantum Enhanced Interferometry (QI) consortium, which is funded as part of the UKRI and STFC's Quantum Technology for Fundamental Physics (QTFP) initiative.

References

- Interferometer response to geontropic fluctuations. D Li, et al. 2023.
 DOI: 10.1103/PhysRevD.107.024002
- Direct limits for scalar field dark matter from a gravitational-wave detector. S M Vermeulen, et al. 2021.
 - DOI: 10.1038/s41586-021-04031-y
- Searching for scalar field dark matter with LIGO. A S Gottel, et al. 2024.
 DOI: 10.48550/arXiv.2401.18076

Thank You - QUEST Layout

