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What are we trying to detect?
• Diffuse supernova neutrino background (DSNB) is 

the cumulative neutrino flux created by all past core 
collapse supernovae in the universe.


• Estimate (1 - 4)  events/kton year from 8-80 
MeV.


• Can be identified through inverse beta decay 
interactions:

× 10−4

Spallation background 
overlayed onto the positron 

kinetic energy spectra for low 
energy antineutrino events. 

PhysRevLett.93.171101
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How are we going to detect it?

Super-Kamiokande 
• ~27 years of data taking!

• Almost 4 years with Gd. Loaded to 0.03 % as of 

July 2022,  average time for neutrons to 
capture.


• Has a 1000 m (2700 m.w.e) rock overburden.

• Observes muons at a rate of 2.5 Hz

75 μs

Hyper-Kamiokande 
• 8 x fiducial volume of Super-K

• Currently under construction and planned to begin 

data taking in 2027.

• Has a 650 m (1750 m.w.e) overburden.

• Will see muons at a rate pf ~45 Hz

• No plan to dope with Gd.
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Spallation process

• Muons produce daughter particles that initiate 
electromagnetic and hadronic showers through 
spallation processes.


• Hadronic showers are the dominant production 
route for unstable isotopes.

• 89% vs 11% for direct interactions between muon 

and oxygen nuclei. 

• Decay products , , , are produced at low 
energy — 


• Showers can be located by neutron captures…

e± n γ
< 20 MeV
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Muon spallation of oxygen-16 
leading to the creation of 
unstable carbon-9 and its 

subsequent beta decay.
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The current SK reduction

• The current SK reduction is based on data.

• Spallation likelihood calculated using 5 

variables.


• , , , , 


• Spallation background removal efficiency 
of ~90%.


• Estimated 50-90% SRN signal 
acceptance


• Introduces a dead-time for SRN events of 
~10%.
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Why change anything?
• Two previous studies simulating cosmic ray muon 

spallation at SK have been done (Li and Beacom (2014) 
and A. Coffani (2021)).

• A. Coffani study done up to 0.01% Gd (SK-VI), no SK-VII 

simulations.


• Spallation events remain a major background to the 
DSNB search.

• Background is  times larger than the SRN flux 

in the 8-20 MeV region of interest.


• Can the simulations instead be used to create the cut?

• Use a machine learning classification in place of the 

likelihood cut.


• Data based cut may not be enough for Hyper-K!

10 − 105

Expected SRN flux and spallation 
background plotted against electron/

positron energy. 
ZHANG Yang PhD thesis 2015

SRN

Cosmic muon spallation

https://arxiv.org/pdf/1402.4687.pdf
https://inspirehep.net/files/dea45b77b308b33822bb54181ae55a02
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The plan
Create a simulation-based cut using machine learning to classify 

spallation-caused low-E events against DSNB candidates.

MUSIC is an MC muon propagation code used to transport muons through 
Ikenoyama to SK.


Generates the energy and angle distributions of cosmic ray muons intersecting 
with the HK tank. Used as the input for FLUKA.

Transport 
muons with 

MUSIC
Astropart.Phys.7:357-368,1997
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The plan
Create a simulation-based cut using machine learning to classify 

spallation-caused low-E events against DSNB candidates.

Transport 
muons with 

MUSIC

FLUKA — General purpose MC with a wide range of applications.


Used here to simulate the muon interactions with water: hadronic showers, 
spallation, radioactive decays etc. Difficult to do this in Geant4 with optical photon 

tracking enabled.


Custom FLUKA user-routines select spallation events and generate vectors for use 
with GHOST.

Astropart.Phys.7:357-368,1997
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The plan
Create a simulation-based cut using machine learning to classify 

spallation-caused low-E events against DSNB candidates.

Transport 
muons with 

MUSIC

FLUKA output is piped into WCSim / the Geant-4 H20 Simulation Toolkit (GHOST) 
with a Hyper-K geometry.


Used here to simulate the detector response to decay particles and hadronic 
showers simulated by FLUKA.


Output from this point should emulate data.

Astropart.Phys.7:357-368,1997
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The plan
Create a simulation-based cut using machine learning to classify 

spallation-caused low-E events against DSNB candidates.

Machine learning 
classification

Transport 
muons with 

MUSIC

Reconstructed spallation-produced low-E events from GHOST then used alongside 
a sample of DSNB IBD events to train and test a machine learning classification.


Training features are based on the variables currently used to calculate the 
data-based likelihoods (distance to muon track etc.).

Astropart.Phys.7:357-368,1997
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Muon transport with MUSIC

• MUSIC transports muons from surface of Mt. Ikeno and 
takes into account:

• Topology

• Bremsstrahlung

• Pair production

• Multiple and inelastic scattering


• Mean energy of muons reaching SK and HK — 258 GeV


• Energy range reaches several TeV.

Ikenoyama topological profile 
Phys.Rev.C81:025807,2010
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FLUKA Spallation Simulation

• Reproducing simulation by A. Coffani with 
increased Gd concentration.


• SK (HK) geometry within FLUKA:

• 39.3 m (68 m) diameter

• 41.4 m (71 m ) tall

• Acts as pure-water or gadolinium-doped 

water target


• Pipe transported muon primaries from MUSIC 
into FLUKA.


• Simulate muon interactions in Gd-water.


• Interface with GHOST
Magnified event display 

μ−

p

n

e+

e−
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Interfacing with GHOST

• Need detector response to reconstruct 
location of shower in simulation.


• Use FLUKA to simulate the hadronic 
processes, decays and muon-nuclear 
interactions.


• Disable all but EM physics in GHOST to 
interface the two.


• Stitch together muon track, shower 
particles, neutron captures and decay 
products for a full spallation simulation.

MIP muon and 
shower particles

t = 0

Neutron 
captures Isotope decays

t ~ 75 μs t ~ 𝒪(1 s)
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Data/MC comparison

•  simulated muons compared with ~  reconstructed muon candidates 
from data
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150− 100− 50− 0 50 100 150
Azimuthal angle [degrees]

0

0.001

0.002

0.003

0.004

0.005

0.006

N
or

m
al

is
ed

 c
ou

nt

Data

Simulation

0 20 40 60 80 100 120 140 160 180
Angle from z-axis [degrees]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

N
or

m
al

is
ed

 c
ou

nt

Data

Simulation



Jack E.P. 
Fannon

15

Data/MC comparison

• Good agreement also seen in entry positions.


• Peaks in data are expected to be caused by grid-based reconstruction — PMT 
snapping.
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Data/MC comparison

• Geant 4 simulated decay betas where 
primaries were produced using FLUKA 
sims.


• Compare distributions once normalised 
to integral.


• Excess in data expected as simulation 
is only products from SK background 
decays and nothing else.


• Not comparing in < 8 MeV phase space 
due to reactor neutrino cut.

0 5 10 15 20 25
Reconstructed kinetic energy [MeV]

0

0.05

0.1

0.15

0.2

0.25

N
or

m
al

is
ed

 c
ou

nt

Data

Simulation



Jack E.P. 
Fannon

17

The classifiers

• Setup a pipeline for training and testing the 
performance of five difference classifiers:

• BDT, random forest, AdaBoost, kNeighbours, 

and gradient boosted.


• Trained on a preliminary set of simulations 
created using results from A. Coffani’s previous 
work.


• BDT shows good classification power: above 
90% probability of correctly identifying 
spallation and SRN events in the < 15 MeV 
range.

Probability of correctly identifying an IBD 
shown against reconstructed positron/electron 

energy for five different classifiers.
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Summary and next steps

FLUKA spallation simulation is setup: 
Show good agreement with data for muon entry point, muon direction and energy 
distribution of decay products.


Machine learning training/testing pipeline is in place: 
Discrimination power of five classifiers tested on a preliminary set of simulations.

BDT currently performs the best: >90% probability of classifying correctly 


Simulate other backgrounds 
A more robust analysis requires other backgrounds to the DSNB search to be simulated: 
atmospheric & solar neutrinos.
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Isotope table
SK background isotopes taken from:


Alice Coffani. New studies on cosmogenic induced spallation 
background for Supernova relic neutrino search in the Super-
Kamiokande experiment. Physics [physics]. Institut Polytechnique 
de Paris, 2021. English. ffNNT : 2021IPPAX112ff. fftel-03591741f
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Classification performance - preliminary

Probability of correctly identifying an IBD shown against reconstructed positron/electron 
energy for five different classifiers.

IBD

Probability of correctly identifying an event caused by decay of a spallation product 
shown against reconstructed positron/electron energy for five different classifiers.

Spallation

Area underneath ROC curve for five classifiers in five energy bins. 
Bins are 4 MeV wide from 0 to 20 MeV.
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Classification performance - preliminary

Probability of correctly identifying an IBD shown against reconstructed positron/electron 
energy for five different classifiers.

IBD

Area underneath ROC curve for five classifiers in five energy bins. 
Bins are 4 MeV wide from 0 to 20 MeV.

• Calculated by using a 5 split kFold validation and 
taking the area underneath the mean ROC curve.


• Boosted decision tree (yellow) shows the best 
classifying power.


• kNeighbours classifier is little better than random 
guessing (50% chance).


• AdaBoost, GradientBoosting and Random forest 
perform almost equally with a small dip in the 4-8 MeV 
bin.


• Reductions in classifying power could be related to 
classification of specific isotopes - requires further 
investigation.
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AdaBoost ROC
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Gradient Boosting ROC
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Random Forest ROC
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kNeighbours ROC



27

BDT ROC


