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Nucleosynthesis (PPN) Codes
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Codes that model astrophysical environments are used throughout the
astrophysics community.
Various different types of software and codes are available with more being
developed independently.

o Post Processing Nucleosynthesis codes are one such example of modeling

software.

These codes depend on theoretically and experimentally obtained data to
accurately model astrophysical processes.
When first examining a new scenario - a neutron star common envelope - we
noticed that different codes produced different abundances for the same input
trajectory and initial composition.



How do PPN codes work?

PPN models nuclear reaction flows (flux)
and isotopic abundance changes using

differential equations.

Inputs: ___ MPPN - Multi-zone Post- Single-zone post-
) Processing Network processing
- Temperature evolution. 1
. luti [ /!
- Density evolution. B s
- Initial abundances. I
- Nuclear reaction cross section data. Validation through astronomy observations
- Experimental. ) R ey
. 1( “ /\-,,” |
- Theoretical. i o e

~»Application in astronomy
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lliadis 2001 and NACRE rates to be converted

Ensuring a fair comparison ﬁ o York

To ensure any differences
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lliadis 2001 and NACRE rates to be converted
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The first code that was
investigated was NuGrid.

This code utilises multiple

For charged particle interactions

reaction libraries.

there are three libraries used:

JINA Reaclib v1.1, NACRE and

[liadis 2001 proton capture study
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lliadis 2001 and NACRE rates to be converted
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The first code that was
investigated was NuGrid.

This code utilises multiple

For charged particle interactions
there are three libraries used:

reaction libraries.

JINA Reaclib v1.1, NACRE and

[liadis 2001 proton capture study
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a) Simple trajectory comparison
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107°

. . .
10° — Simple lliadis 2001 converted to Reaclib
—#— Simple NACRE converted to Reaclib

—— Simple Default library compilation
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2001 to JINA
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Reaclib v1.1 -

b) Common Envelope comparison
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10° = Common envelope lliadis 2001 converted to Reaclib

FO r th e S i mp l e hyd ro S tati C b u rn 105 —+— Common envelope NACRE converted to Reaclib

—— Common envelope default library compilation
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and X-ray burst trajectory we
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see little impact.
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c) X-ray Burst comparison
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r-process there are large v T
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lliadis 2001 and NACRE rates to be converted

Ir comparison

Ensuring a fa
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The first code that was
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investigated was NuGrid.

This code utilises multiple

For charged particle interactions
there are three libraries used:
JINA Reaclib v1.1, NACRE and

reaction libraries.

[liadis 2001 proton capture study
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Converting Iliadis
2001 to the default
JINA Reaclib (2021)

Using the updated the version of
JINA Reaclib, we see that
converting the NACRE and Iliadis
2001 rates has almost no impact
on the Common envelope
trajectory.

The R-process trajectory still
shows different elemental
abundances. We are still trying to
understand why this occurs.
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a) Simple trajectory comparison
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— Simple lliadis 2001 converted to Reaclib
—#— Simple NACRE converted to Reaclib
—— Simple Default library compilation

b) Common Envelope comparison
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= Common envelope lliadis 2001 converted to Reaclib
—+— Common envelope NACRE converted to Reaclib
—— Common envelope default library compilation
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— XRB lliadis 2001 converted to Reaclib
—#— XRB NACRE converted to Reaclib
—— XRB default library compilation

d) R-process comparison
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—¥— R-process NACRE converted to Reaclib
—— R-Process default library compilation




Which codes are included?

Four codes were used in this
comparison:

- NuGrid - 5234 isotopes

- PRISM - 5234 isotopes

- SkyNet - 5234 isotopes

- A nucleosynthesis code with
performance improvements as
presented in [Longland 2014] -
2464 isotopes

Portable Routines for Integrated nucleoSynthesis Modeling

The four codes were updated to use
the latest version of JINA Reaclib.




The Results -
Simple trajectory

For a simple hydrostatic
burn we see little difference
in the results from each
network.

During low temperature and
low density hydrogen
burning the codes mostly
agree with each other.
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The Results -
Common envelope

Common Envelope different code comparison

Similar abundances in ol ‘ ~
NuGrid and SkyNet are seen  »- ' ,‘ \\ S
up to Nickel | l ‘ ¥ ;;g;j ‘

SkyNet under produces ’ i

elements beyond Nickel

compared to the others
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The Results -
Common envelope

On further investigation the
peak at Oxygen produced by
NuGrid is due to a network
boundary decay issue.
Oxygen 12

Mass fraction
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The Results -
X-ray burst

Once again we see large
differences between all of
the codes. With only a few
elements around
Manganese that have
similar mass fractions.

Mass fraction

—+— Nugrid
-~ PRISM
= Longland
—— Skynet
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The Results -
R-process trajectory

PRISM doesn’t produce any
elements beyond Strontium.
SkyNet and NuGrid both
elements produce up to
Bismuth but SkyNet
consistently under

Mass fraction

produces most elements
compared to NuGrid.

R-process different code comparison
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Conclusion

While we are still trying to understand the exact origin of the
difference that can be found in the resulting elemental abundances,
we believe that it is due to different implementations of numerical
solvers, screening effects and potentially also due to resolution of the
temperature grids used inside these networks.

Choice of reaction library and PPN code can impact extreme
environments. Care must be taken to ensure that the correct network
is chosen for a specific environment, and these environments should
be tested in more than one PPN code.
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For further questions, please contact ahs539@york.ac.uk



