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Polarised nuclear targets

● Help to answer questions such as:

“How do quarks and gluons carry the spin of protons?”

● Current targets use frozen ammonia/butanol polarized by DNP.

● Cannot keep up with increasing beam intensities.

○ Strong depolarisation effects from heat deposition.

○ Long polarisation build-up times.

● We hope SABRE can resolve these issues.

MAMI Frozen spin targetDNP polarisation build-up

Proton analysing power
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Hyperpolarisation → greater than equilibrium spin 

polarisation, given by:

Thermal equilibrium polarisation:

p-H2

o-H2

p-H2 generator at CHyM.Spin configurations of H2. p-H2 % by temperature.

[4]  G. Buntkowsky et. Al, RSC Adv, vol. 12, no. 20, pp. 12477–12506, Apr. 2022.
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Parahydrogen (p-H2) → Singlet nuclear spin 

isomer of molecular hydrogen (H2).

Readily produced by passing H2 over a 

ferromagnetic catalyst at low temperatures.

Hyperpolarisation and parahydrogen
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● Chemically-catalysed nuclear hyperpolarisation technique.

● Uses p-H2 feedstock of spin order.

● Works at room temperature in weak magnetic fields (μT-mT).

● Polarisation can be generated continuously.

● 1H, 13C, 15N (+ more).

SABRE

100x
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[5]  Barskiy et. al, S. Knecht, Prog Nucl Magn Reson Spectrosc, vol. 114–115, pp. 33–70, Oct. 2019.

● SABRE substrates and p-H2 brought together by SABRE catalyst.

● Spin exchange occurs through JHH couplings.

● LACs for an allow the transition Sα → T+β at specific magnetic fields.

● Polarisation reaches a maximum within seconds.

[5]

SABRE spin order transfer
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Trends seen:

+ Methyl group: Polarisable protons ↑, Polarisation lifetime ↓.

+ Halogen: Polarisable protons ↓, Polarisation lifetime ↑.

→ Addition of low-𝛾 nuclei can reduce relaxation in 

hyperpolarised material.

→ Addition of halide/methyl groups can reduce binding 

efficiency, especially in positions 2 & 6.

Data from selected substrates under equivalent conditions.

Substrate comparison
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+ Co-substrate: Enh ↑

+ Co-ligand: Enh ↑↑

+ Deuterated catalyst: Enh ↑↑↑

+ Co-ligand and deuterated catalyst: Enh ↓

Substrate of interest due to high polarizable proton fraction and high yields.

→ Optimum field for LAC found to be 6 mT for 1H.
Pyridine-d5 co-substrate DMSO-d6 co-ligand IMes-d22 deuterated catalyst NHC

Pyridine Enhancement Optimisation

(f
o

ld
)

7



● Signal enhancement (Enh) seen is 102-103 fold 
lower than for optimal conditions.

● Enh doesn’t scale linearly with catalyst 
concentration - dependence is logarithmic.

● Solubility of p-H2 in solution is the limiting factor.

→ Polarization of neat liquids via SABRE is not feasible 
without extreme pressures. 

SABRE typically performed in solution using MeOD-d4/DCM-d2 as a solvent. 
What happens if SABRE is performed on a neat solution of substrate?

Limitations of p-H2 solubility
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Model substrate -
3,5-dichloropyridine

Relaxation studies on model substrate

Conclusions:

a) Relative catalyst concentration in solution is the primary driver of relaxation.

b) Dependence of relaxation on holding field is small in the range 1.4-11.7T.

c) Relaxation T1 peaks at 30°C.

Relaxation decay constant, T1, is a key metric in hyperpolarisation:

• Determines the maximum polarisation levels that can be reached.

• Long T1 reduces the need for high p-H2 pressures and catalyst 

concentrations.

9



a) Variation of T1 with substrate excess

Model substrate -
3,5-dichloropyridine

Relaxation studies on model substrate

Conclusions:

a) Relative catalyst concentration in solution is the primary driver of relaxation.

b) Dependence of relaxation on holding field is small in the range 1.4-11.7T.

c) Relaxation T1 peaks at 30°C.
[6] B. J. Tickner et al., ACS Catal, vol. 14, no. 2, pp. 994–1004, Jan. 2024.
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b)  Variation of T1 with holding field

Model substrate -
3,5-dichloropyridine

Relaxation studies on model substrate

Conclusions:

a) Relative catalyst concentration in solution is the primary driver of relaxation.

b) Dependence of relaxation on holding field is small in the range 1.4-11.7T.

c) Relaxation T1 peaks at 30°C.
[6] B. J. Tickner et al., ACS Catal, vol. 14, no. 2, pp. 994–1004, Jan. 2024.
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c)  Variation of T1 with temperature

Model substrate -
3,5-dichloropyridine

Relaxation studies on model substrate

Conclusions:

a) Relative catalyst concentration in solution is the primary driver of relaxation.

b) Dependence of relaxation on holding field is small in the range 1.4-11.7 T.

c) Relaxation T1 peaks at 30°C. 12



Aim → Test resilience of SABRE hyperpolarization to an incident photon beam by  
monitoring rate of polarization decay.

● Facility produces energy-tagged Bremsstrahlung photons from a high 
energy electron beam. E = 40 MeV → 1.6 GeV.

● 2 halogenated pyridine/pyrazines chosen for long polarisation lifetimes.

● Additional sample left in high dose area (electron beam dump) to 
investigate effects of radiation damage.

● Measurements made using commercially available, low cost benchtop MRI.
Beamline

Sample

Benchtop
MRITest substrates - 3,5-dichloropyridine (left), 3,5-

dichloropyrazine (right).

[7]  Floorplan of the MAMI facility, by Ostrickm, licensed under CC-BY-SA-3.0.

[7]

Polarization resilience test @ MAMI
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Experimental procedure:
Pulse sequence:

Variable flip angle pulse sequence uses many small flip 
angle RF pulses to sample the magnetisation.

[8]  O. Semenova et. al, Anal Chem, vol. 91, no. 10, pp. 6695–6701, 2019.

[8]

Experimental procedure and pulse 
sequence
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High dose sample

Irradiated in highest dose area of the facility -
electron beam dump.

● T1 increased by 9%.

● Polarisation yield decreased by 13%.

● No colour change.

→ Polarisation catalyst not significantly affected.

Results from MAMI

→ No visible change in relaxation rate for runs with/without beam.

Decay plots
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Ratio of log. gradients of the beam-on runs 
to the control run.

Ratio of 1 shows same rate of decay - ratio 
of 0.5/2 shows half/double rate of decay.

→ No evidence for significant levels of 
beam-induced decay. 

Ratio of polarized signal in beam-on and 
control measurements.

● Avg. ratio to control is close to 1.
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SABRE is a cost-effective and easy to implement nuclear polarization technique which operates at room 
temperature in weak fields and may be able to overcome some of the issues facing DNP polarized targets.

→ Comprehensive substrate scope performed with key substrates of interest identified.

→ Optimisation of polarization yields undertaken with >10% 1H polarization achieved.

→ Relaxation studies performed to identify optimum running conditions.

→ First measurements on the resilience of SABRE polarization to an incident photon beam & effects of high 

accumulated dose.

→ Showed that polarization monitoring can be performed accurately on a commercially available, low-cost 

benchtop MRI.
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+ Deuterated co-substrate: Enh ↑

+ Co-ligand: Enh ↑↑

+ Deuterated catalyst: Enh ↑↑↑

+ Co-ligand and deuterated catalyst: Enh ↓

Substrate of interest due to high polarizable proton fraction and high yields.

→ Optimum PTF found to be 6 mT for 1H.

Pyridine-d5 co-substrate DMSO-d6 co-ligand IMes-d22 deuterated catalyst NHC

Pyridine Enhancement Optimisation
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Substrate comparison

Trends seen:

+ Methyl group: Polarizable protons ↑, Polarization lifetime ↓

+ Halogen: Polarizable protons ↓, Polarization lifetime ↑

→ Addition of low-𝛾 nuclei can reduce relaxation in hyperpolarized material.

→ Addition of halide/methyl groups can cause steric hindrance, especially in positions 2 & 6.

Data from selected substrates under equal conditions (40 equiv. substrate, 5 equiv. DMSO-d6 co-ligand in DCM-d2).
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Experimental procedure and pulse 
sequence:

Experimental procedure:

Pulse sequence:

Variable flip angle pulse sequence uses small tip angle RF 
pulses to sample the magnetisation:

Mz,n and Mxy,n are the longitudinal and transverse magnetisation, Δtn is 

the delay following, and 𝜃n is the tip angle used for the nth scan.

[7]  O. Semenova, P. M. Richardson, A. J. Parrott, A. Nordon, M. E. Halse, and S. B. Duckett, “Reaction Monitoring Using SABRE-Hyperpolarized Benchtop (1 T) NMR Spectroscopy,” 

Anal Chem, vol. 91, no. 10, pp. 6695–6701, 2019, doi: 10.1021/acs.analchem.9b00729.
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Results

→ No visible change in relaxation rate for runs with/without beam.

Decay plots
High dose sample

Irradiated in highest dose area of the facility -
electron beam dump.

● T1 increased by 9%.

● Polarisation yield decreased by 13%

● No colour change.

→ Polarisation catalyst not significantly affected.
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