

Training Outreach and Education http://www.nesc.ac.uk/training

http://www.ngs.ac.uk

Data and storage services on the NGS

Policy for re-use

- This presentation can be re-used for academic purposes.
- However if you do so then please let <u>training-support@nesc.ac.uk</u> know. We need to gather statistics of re-use: no. of events, number of people trained. Thank you!!

Data and storage

- This talk: Background and NGS services
- Yesterday: how to run jobs
- BUT
 - Can't have computation without data!
- AND **BUT**
 - It's the data that drives research
 - Data \rightarrow Information \rightarrow Knowledge

• AND YEAH BUT NO BUT

- Can't have digital data without computation!

Astronomy

No. & sizes of data sets as of mid-2002, grouped by wavelength

- 12 waveband coverage of large areas of the sky
- Total about 200 TB data
- Doubling every 12 months
- Largest catalogues near 1Billion objects

Data and images courtesy Alex Szalay, John Hopkins University

EMBL Nucleotide Sequence Database

PDB - Protein Data Bank

Data, Data Everywhere

- Entering an age of data: data explosion growing volumes
 - CERN: LHC will generate 1GB/s = 10PB/y
- Data stored in many different ways growing diversity
 - Relational databases
 - XML databases
 - Flat files
- From
 - Legacy datasets
 - Simulations
 - New measurements, sources, analyses....

So how do we....

- Mine data riches for nuggets of information?
 - Discovery depends on insights
 - Unpredictable or unexpected use of data
- Facilitate
 - Data discovery
 - Data understanding
 - Data access
 - Data integration
- Empower e-Business and e-Research
- A Grid is a vehicle for achieving this

A Grid and data

- Grid: diverse services sharing AuthN and AuthZ across admin domains, including:
 - Data storage
 - Controlled AA
 - Data transfer
 - Between stores, stores and compute nodes
 - Data catalogues, registries,...
 - How can I find the data in the resources that I can access?
- Key issue:
 - Move data to where computation will happen?
 - Move computation to be close to data?

Move computation to the data

- Assumption: code size << data size
 - Minimise data transport
- Provision combined storage & compute resources
- Develop the database philosophy for this?
 - Queries are programs safe to run near data
- Develop the storage architecture for this?
 - Computation hosted close to storage
- Develop experiment, sensor & simulation architectures
 - That take code to select and digest data as an output control
 - That attach the provenance & metadata

Meta-data: describing data

- Choosing data sources
 - How do you find them?
 - How are they described and advertised?
- Meta-data is required describing
 - Content
 - Provenance
 - Structure
 - Types, Formats & Ontologies
 - Operations available
 - Access requirements
 - Quality of service

Necessary to find, understand, access, automate, assess quality and manage But very hard to create & maintain: Incentives & tools

2 main types of data services on Grids

OGSA DAI

In Globus 4

Not (yet...) in gLite

EXAMPLE 1 Constrained by Constraining Grids for E-science

- Simple data files on grid-specific storage
- Middleware supporting
 - Replica files
 - to be close to where you want computation
 - For resilience
 - Logical filenames
 - Catalogue: maps logical name to physical storage device/file
 - Virtual filesystems, POSIX-like I/O
 - Services provided: storage, transfer, catalogue that maps logical filenames to replicas.
- Solutions include
 - gLite data service
 - Globus: Data Replication
 Service

Storage Resource Broker

- Other data! e.g.
 - Structured data: RDBMS, XML databases,...
 - Files on project's filesystems
 - Data that may already have other user communities not using a Grid
- Require extendable middleware tools to support
 - Computation near to data
 - Controlled exposure of data without replication
- Basis for integration and federation

National Grid Service

Oracle and the NGS

- The requirement for data hosting will grow
- Oracle database: for both users and services offered by the NGS.

The NGS Oracle service is ready to host data for your project!

• Additional application needed after joining the NGS

Data & storage services on the NGS

- The Storage Resource Broker
- GridFTP: a protocol for large file transfer
- OGSA-DAI: data access and integration
- And also: ORACLE available for data storage