ggf Status Report

Alessandra Cappati, Robin Hayes, Alexander Huss, Stephen Jones

Dec. 4, 2024

ggF WGI: Who We Are

Stephen Jones (Theory)

Alessandra Cappati (CMS)

Alexander Huss (Theory)

Robin Hayes (ATLAS)

In This Talk

- ggF at the LHC
 - Experimental context
- Theory updates this past year:
 - Quark mass effects in ggF loop: top, bottom mass dependence
 - aN3LO PDFs
 - N4LO soft-virtual approximation
 - 3-loop heavy flavour corrections
- Status of ggF cross-section update for 13.6 TeV
- Possible future areas of focus

• Largest production mode at the LHC.

• Theoretically: Calculations complicated by the quark loop: introduces dependence on top mass and other heavy quark (b, c).

ggF at the LHC

• Run 2: measurements systematics-dominated, ~same precision as theory.

Cross-section normalized to SM value

CMS HIG-22-001

5

Parameter value

ggF at the LHC

Experiments also studying interesting new modes in Run 2 data, eg. inclusive H+c production with sensitivity to charm Yukawa coupling:

<u>ATLAS</u> and <u>CMS</u> probed inclusive H+c production in the diphoton channel.

CMS: limits on kappa_c < 38.1 obs (72.5 exp) ATLAS: H+c cross-section < 10.4 pb at 95% CL

More on this topic in the first talks of the WG1 parallel session!

ggF Cross-Sections at 13.6 TeV

- First results with data at 13.6 TeV already available both from ATLAS and CMS
 - For now using ad interim prescriptions from LHCHWG: <u>arXiv:2402.09955</u>
 - Future analyses will need more precise predictions

ggF Cross-Sections at 13.6 TeV

- Goal: update cross-section prediction for new COM energy, with theory developments of the last several years.
- Numbers will be included in YR 5
 - Feature updates on next slides
 - Will summarize status and approach after.

Stephen's summary

Progress

 $\delta(1/m_t)$: Now known to NNLO

 $\delta(t, b, c)$: Now known to NNLO

 $\delta(EW)$: gg known, UNC. 1%

 $\delta(\text{PDF}-\text{TH})$: Progress but uncertainty persists

 $\delta(\text{scale})$: Some ingredients known

edt 21
D; +

Quark Mass Effects

- ggF calculation made extra challenging by presence of massive quarks in the loop.
 - \circ Calculations usually performed in heavy top limit \rightarrow integrate out the top quark, decrease number of loops.

- Recent theory improvements:
 - Top mass dependence up to NNLO
 - Top x bottom mass dependence in interference up to NNLO

NNLO with Top Mass Dependence

Top mass dependence at NNLO included since last year.

channel		$\sigma_{ m HEFT}^{ m NNLO}$ [pb	$\left(\sigma_{\mathrm{exact}}^{\mathrm{NNLO}} - \sigma_{\mathrm{HEFT}}^{\mathrm{NNLO}}\right) ~\mathrm{[pb]}$			
	$\mathcal{O}($	$(lpha_s^2) + \mathcal{O}(lpha_s^3) +$	$\mathcal{O}(lpha_s^3)$	$\mathcal{O}(\alpha_s^4)$		
·	\sqrt{s}					
gg	+15.966	+19.295(3)	+8.574(13)	+0.0280	+0.2409(7)	
qg		+1.483(2)	+0.831(6)	-0.3705	-0.0416(5)	
qq		+0.024(1)	+0.101(1)	+0.0317	-0.0505(1)	
total	+15.966	+20.802(4)	+9.506(14)	-0.3108	+0.1488(9)	
	\sqrt{s}					
gg	+17.110	+20.754(3)	+9.216(13)	+0.0238	+0.2644(6)	
qg		+1.613(2)	+0.916(6)	-0.4034	-0.0459(5)	
qq		+0.026	+0.109(1)	+0.0335(1)	-0.0551(1)	
total	+17.110	+22.394(4)	+10.241(15)	-0.346	+0.1634(8)	

Czakon, Niggetiedt 20; Czakon, Harlander, Klappert, Niggetiedt 21

 Dependence on renormalization scale for Yukawa: results previously only available in pole mass scheme, but as of this year also in MSbar scheme → can be incorporated in ggF xsec update!

NNLO with b,c Mass Dependence

• Top-bottom interference included up to NNLO (remaining effects of bottom and charm mass still at NLO).

Niggetiedt, Usovitsch 23

Quarks in loop 1 and loop 2 can have different masses.

Czakon, Eschment, Niggetiedt, Poncelet, Schellenberger 23

- Results in MSbar scheme → can be incorporated in ggF xsec update!
 - Sensitive to choice of renormalization scheme.

NNLO with b,c Mass Dependence

- Accounting for top-bottom interference decreases cross-section by ~4% at NNLO compared to heavy top limit.
 - Effect very stable on moving from NLO (also 4%) to NNLO.

Interference contribution:

	7 TeV	$8 { m TeV}$	$13 { m TeV}$	$13.6 { m ~TeV}$	$14 { m TeV}$
LO	$-0.39^{+0.10}_{-0.15}~{ m pb}$	$-0.50^{+0.12}_{-0.19} { m ~pb}$	$-1.09^{+0.27}_{-0.42} \text{ pb}$	$-1.17^{+0.29}_{-0.45} \text{ pb}$	$-1.22^{+0.31}_{-0.47} \text{ pb}$
NLO	$-0.66^{+0.11}_{-0.12}~{ m pb}$	$-0.82^{+0.13}_{-0.14}~{ m pb}$	$-1.72^{+0.26}_{-0.27} { m ~pb}$	$-1.84^{+0.28}_{-0.29} \text{ pb}$	$-1.91^{+0.29}_{-0.30}~{ m pb}$
NNLO	$-0.68^{+0.06}_{-0.02} { m ~pb}$	$-0.84^{+0.07}_{-0.01} \text{ pb}$	$-1.70^{+0.13}_{-0.01} { m ~pb}$	$-1.80^{+0.13}_{-0.01}$ pb	$-1.88^{+0.13}_{-0.01} \text{ pb}$

Czakon, Eschment, Niggetiedt, Poncelet, Schellenberger 23

 From experiments: Predictions for finite quark mass effects, differential in pTH, useful for (kt/kb/kc diff xsec interpretations).

aN3LO PDFS

Dedicated ggF WG1 meeting in June
 → Status: NNPDF and MSHT have produced aN3LO PDFs, CT supports full PDF4LHC combo only later. (See <u>PDF talk</u> this week!)

ggF: aN3LO PDFs for Run3 & YR5

- Wednesday 26 Jun 2024, 14:00 → 18:00 Europe/Zurich
- 4/3-004 TH Discussion Room (CERN)

14:00 → 14:10 ggF Overview meeting_recording_... A siones-intro.pdf meeting_recording_... 14:15 → 14:35 MSHT (Thomas Cridge) Speaker: Thomas Cridge (DESY) TCridge aN3LO_PD... 14:50 → 15:10 NNPDF (Giacomo Magni) Speaker: Giacomo Magni (Nikhef, VU Amsterdam) Higgs_WG_26_06_2... 15:25 → 15:45 ABM (Sasha Zenaiev) Speaker: Oleksandr Zenaiev (Hamburg University) Zenaiev-Higgs.pdf 16:00 $\rightarrow 16:15$ Break → 16:35 CT (Marco Guzzi) 16:15 Speaker: Marco Guzzi (Kennesaw State University) A ggF-mguzzi-June-2... → 17:05 Splitting Functions (Sven-Olaf Moch) 16:50 Speakers: Giulio Falcioni, Sven-Olaf Moch, Sven-Olaf Moch higgs-ggF-2024.pdf 17:10 → 17:25 Splitting Functions (Tongzhi Yang) Speakers: Thomas Kurt Gehrmann (University of Zurich (CH)), Tongzhi Yang pgF2024.pdf → 18:00 Summary & Discussion

After the dedicated meeting, NNPDF and MSHT performed **combination** of their aN3LO PDFs according to PDF4LHC methods:

Combined aN3LO pure QCD and QCD+QED sets, shown as a ratio to NNLO.

Combination published in <u>2411.05373</u>, planned as YR5 submission.

aN3LO PDFs have a sizeable effect on the Higgs production cross-section, especially in VBF and ggF:

 Lower ggF xsec by ~3% → previously underestimated PDF-TH uncertainty on ggF xsec? (Was 1.18%, from comparison with PDF4LHC15) N4LO Cross-Sections with Soft-Virtual Approx

Work done toward N4LO Higgs production.

Case-I: $\alpha_{s}^{c}(m_{Z}) =$ FROM LHAPDF (DEFAULT VALUE)

 Matrix elements computed in soft-virtual approximation (assuming additional radiation is soft).

Moch and Das, based on 2004.00563

1.1

		N3LO (δ in %)		N4LOsv (δ in %)			
PDF Name	Central	δ(N3LO)	$\delta(\text{Scale})$	$\delta(PDF)$	Central	$\delta(N4LO)$	$\delta(\text{Scale})$	$\delta(\text{PDF})$
ABMP16_5_nnlo [2]	48.8	3.3	$^{+0.2}_{-3.6}$	$^{+1.7}_{-1.7}$	48.7	-0.1	$^{+0.5}_{-2.1}$	$^{+1.7}_{-1.7}$
ABMPtt_5_nnlo [3]	48.4	3.3	$^{+0.2}_{-3.6}$	$^{+1.5}_{-1.5}$	48.4	-0.1	$^{+0.5}_{-2.1}$	$^{+1.5}_{-1.5}$
CT18NNLO [4]	51.3	3.5	$^{+0.3}_{-3.9}$	$^{+2.8}_{-3.6}$	51.3	-0.1	$^{+0.5}_{-2.3}$	$^{+2.8}_{-3.6}$
MSHT20nnlo_as118 [5]	51.4	3.5	$^{+0.3}_{-3.9}$	$^{+1.2}_{-1.2}$	51.3	-0.1	$^{+0.5}_{-2.3}$	$^{+1.2}_{-1.2}$
NNPDF40_nnlo_as_01180 [6]	51.7	3.5	$^{+0.3}_{-3.9}$	$^{+0.6}_{-0.6}$	51.7	-0.1	$^{+0.5}_{-2.3}$	$^{+0.6}_{-0.6}$
PDF4LHC21_40 [7]	51.6	3.5	$^{+0.3}_{-3.9}$	$^{+0.6}_{-0.6}$	51.5	-0.1	$^{+0.5}_{-2.3}$	$^{+0.6}_{-0.6}$
MSHT20an3lo_as118 [8]	48.7	3.5	$^{+0.3}_{-3.9}$	$^{+1.9}_{-1.7}$	48.7	-0.1	$^{+0.5}_{-2.3}$	$^{+1.9}_{-1.7}$
NNPDF40_an3lo_as_01180 [9]	50.6	3.5	$^{+0.3}_{-3.9}$	$^{+0.6}_{-0.6}$	50.6	-0.1	$^{+0.5}_{-2.3}$	$^{+0.6}_{-0.6}$

N4LO affects size of xsec prediction (-0.1% with muR=mH/2) and scale uncertainty (~3% compared to ~4% at NNLO).

Table 1: Higgs cross-section along with the absolute error obtained from seven-point scale variation around $(\mu_R^c, \mu_F^c) = (1/2, 1/2)m_H$ as well as intrinsic PDF uncertainty using LHAPDF. $\sqrt{S} = 13.6$ TeV, α_S from LHAPDF (NNLO value).

3-Loop Heavy Flavour Corrections

 $Q^2 = 10000$ GeV²; from Ref. [41].

- Heavy flavour quark contributions to PDFs have to be accounted for in PDF fits
 Input to aN3LO PDFs
- New work from Johannes Bluemlein et al. accounts for massive 3-loop corrections in PDF fits

Partonic cross-section decomposed:

$$\sigma_{ij} = \operatorname{R}_{\operatorname{LO}} C^{2} \left(\sigma_{ij}^{\operatorname{LO,HTL}} + \sigma_{ij}^{\operatorname{NLO,HTL}} + \sigma_{ij}^{\operatorname{NNLO,HTL}} + \sigma_{ij}^{\operatorname{N^{3}LO,HTL}} \right) + \delta \sigma_{ij}^{\operatorname{LO},(t,b,c)} + \delta \sigma_{ij}^{\operatorname{NLO},(t,b,c)} + \delta \sigma_{ij}^{\operatorname{NNLO},(t,b,c)} + \delta \sigma_{ij$$

• Dependence on t, b, c quark masses:

$$\begin{split} \delta \sigma_{ij}^{\mathrm{LO},(t,b,c)} = & \sigma_{ij}^{\mathrm{LO},(t,b,c)} - \left[C_{\mathrm{QCD}}^2 R_{\mathrm{LO}} \sigma_{ij}^{\mathrm{HTL}} \right]_{\alpha_s^2}, \\ \delta \sigma_{ij}^{\mathrm{NLO},(t,b,c)} = & \sigma_{ij}^{\mathrm{NLO},(t,b,c)} - \left[C_{\mathrm{QCD}}^2 R_{\mathrm{LO}} \sigma_{ij}^{\mathrm{HTL}} \right]_{\alpha_s^3}, \\ \delta \sigma_{ij}^{\mathrm{NNLO},(t,b,c)} = & \sigma_{ij}^{\mathrm{NNLO},(t,b,c)} - \left[C_{\mathrm{QCD}}^2 R_{\mathrm{LO}} \sigma_{ij}^{\mathrm{HTL}} \right]_{\alpha_s^4}, \end{split}$$

18

• With each term decomposed as:

$$\sigma_{ij}^{N^{n}\text{NLO},(t,b,c)} = \sigma_{ij}^{N^{n}\text{NLO},(t)} + \sigma_{ij}^{N^{n}\text{NLO},(b)} + \sigma_{ij}^{N^{n}\text{NLO},(c)} + \sigma_{ij}^{N^{n}\text{NLO},(t\times b)} + \sigma_{ij}^{N^{n}\text{NLO},(t\times c)} + \sigma_{ij}^{N^{n$$

 Exact dependence on massive t, and b/t interference, only available for mH=125.09 GeV → extrapolate to other masses:

$$\begin{split} R_n^H(m_H) = & \frac{\left[C_{\rm QCD}^2 R_{\rm LO} \sigma_{ij}^{\rm HTL}\right]_{\alpha_s^n}(m_H)}{\left[C_{\rm QCD}^2 R_{\rm LO} \sigma_{ij}^{\rm HTL}\right]_{\alpha_s^n}(m_H^{\rm ref})},\\ \delta \sigma_{ij}^{\rm NNLO,(t),ext}(m_H) = & R_4^H(m_H) \ \delta \sigma_{ij}^{\rm NNLO,(t)}(m_H^{\rm ref}),\\ \delta \sigma_{ij}^{\rm NNLO,(t\times b),ext}(m_H) = & R_4^H(m_H) \ \delta \sigma_{ij}^{\rm NNLO,(t\times b)}(m_H^{\rm ref}), \end{split}$$

Conservative uncertainties assigned on the extrapolation, and on the scheme (MSbar vs OS)

- Lots of room for discussion: handling of PDF.
 - Use PDF4LHC21 right now \rightarrow all inputs produced using this.
 - aN3LO PDFs induce large correction (or large uncertainty): ~-4%.
 - QED evolution effects have also been included in aN3LO PDFs: ~-1%

• Current numbers produced at all Higgs mass points and COM energies:

$\sqrt{s} [{ m TeV}]$	$M_{ m H}~[{ m GeV}]$	$\sigma [{ m pb}]$	$\delta(ext{scale})$	$\delta(\text{EWK})$	$\delta^{ m sch.}(m_{ m t})$	$\delta^{\mathbf{ext.}}(\mathbf{t})$	$\delta^{\text{ext.}}(\mathbf{t} \times \mathbf{b})$	$\delta(ext{theory})$	$\delta(\text{PDF} + \alpha_s)$	$\delta(\text{PDF})$	$\delta(lpha_s)$	$\delta^{\mathrm{old}}(\mathrm{PDF}\text{-}\mathrm{TH})$
13.6	120.00	53.89	$^{+0.56}_{-3.32}\%$	$\pm 1.00\%$	$\pm 0.12\%$	$\pm 0.03\%$	$\pm 0.03\%$	$^{+1.74}_{-4.50}\%$	$^{+2.68}_{-2.27}\%$	$^{+1.65}_{+1.65}\%$	$^{+2.12}_{-1.57}\%$	$\pm 1.21\%$
13.6	122.00	52.37	$^{+0.56}_{-3.31}\%$	$\pm 1.00\%$	$\pm 0.17\%$	$\pm 0.02\%$	$\pm 0.02\%$	$^{+1.77}_{-4.52}\%$	$^{+2.68}_{-2.27}\%$	$^{+1.65}_{+1.65}\%$	$^{+2.11}_{-1.56}\%$	$\pm 1.20\%$
13.6	124.00	50.91	$^{+0.56}_{-3.31}\%$	$\pm 1.00\%$	$\pm 0.16\%$	$\pm 0.01\%$	$\pm 0.00\%$	$^{+1.72}_{-4.47}\%$	$^{+2.68}_{-2.26}\%$	$^{+1.64}_{+1.64}\%$	$^{+2.11}_{-1.56}\%$	$\pm 1.18\%$
13.6	124.60	50.49	$^{+0.56}_{-3.31}\%$	$\pm 1.00\%$	$\pm 0.15\%$	$\pm 0.00\%$	$\pm 0.00\%$	$^{+1.71}_{-4.46}\%$	+2.67 %	+1.64%	$^{+2.11}_{-1.56}\%$	$\pm 1.18\%$
13.6	124.80	50.35	$^{+0.56}_{-3.31}\%$	$\pm 1.00\%$	$\pm 0.15\%$	$\pm 0.00\%$	$\pm 0.00\%$	$^{+1.71}_{-4.46}\%$	$^{+2.67}_{-2.26}\%$	$^{+1.64}_{+1.64}\%$	$^{+2.11}_{-1.55}\%$	$\pm 1.18\%$
13.6	125.00	50.21	$^{+0.56}_{-3.31}\%$	$\pm 1.00\%$	$\pm 0.15\%$	$\pm 0.00\%$	$\pm 0.00\%$	$^{+1.70}_{-4.45}\%$	$^{+2.67}_{-2.26}\%$	$^{+1.64}_{+1.64}\%$	$^{+2.11}_{-1.55}\%$	$\pm 1.18\%$
13.6	125.09	50.14	$^{+0.56}_{-3.31}\%$	$\pm 1.00\%$	$\pm 0.15\%$	$\pm 0.00\%$	$\pm 0.00\%$	$^{+1.70}_{-4.45}\%$	$^{+2.67}_{-2.26}\%$	$^{+1.64}_{+1.64}\%$	$^{+2.11}_{-1.55}\%$	$\pm 1.18\%$
13.6	125.20	50.07	$^{+0.56}_{-3.31}\%$	$\pm 1.00\%$	$\pm 0.14\%$	$\pm 0.00\%$	$\pm 0.00\%$	$^{+1.70}_{-4.45}\%$	$^{+2.67}_{-2.26}\%$	$^{+1.64}_{+1.64}\%$	$^{+2.11}_{-1.55}\%$	$\pm 1.18\%$
13.6	125.30	50.00	$^{+0.56}_{-3.30}\%$	$\pm 1.00\%$	$\pm 0.14\%$	$\pm 0.00\%$	$\pm 0.00\%$	$^{+1.70}_{-4.44}\%$	$^{+2.67}_{-2.26}\%$	$^{+1.64}_{+1.64}\%$	$^{+2.11}_{-1.55}\%$	$\pm 1.18\%$
13.6	125.38	49.94	$^{+0.56}_{-3.30}\%$	$\pm 1.00\%$	$\pm 0.14\%$	$\pm 0.00\%$	$\pm 0.00\%$	$^{+1.70}_{-4.45}\%$	$^{+2.67}_{-2.26}\%$	$^{+1.64}_{+1.64}\%$	$^{+2.11}_{-1.55}\%$	$\pm 1.18\%$
13.6	125.60	49.79	$^{+0.55}_{-3.30}\%$	$\pm 1.00\%$	$\pm 0.14\%$	$\pm 0.00\%$	$\pm 0.00\%$	$^{+1.70}_{-4.45}\%$	+2.67 -2.26%	+1.64%	$^{+2.11}_{-1.55}\%$	$\pm 1.17\%$
13.6	126.00	49.52	$^{+0.55}_{-3.30}\%$	$\pm 1.00\%$	$\pm 0.14\%$	$\pm 0.00\%$	$\pm 0.01\%$	$^{+1.70}_{-4.45}\%$	+2.67 -2.26%	+1.64%	$^{+2.11}_{-1.55}\%$	$\pm 1.17\%$
13.6	128.00	48.18	$^{+0.55}_{-3.29}\%$	$\pm 1.00\%$	$\pm 0.13\%$	$\pm 0.02\%$	$\pm 0.02\%$	$^{+1.72}_{-4.46}\%$	$+2.67\ \%$	$^{+1.64}_{+1.64}\%$	$^{+2.10}_{-1.55}\%$	$\pm 1.16\%$
13.6	130.00	46.89	$^{+0.55}_{-3.28}\%$	$\pm 1.00\%$	$\pm 0.13\%$	$\pm 0.03\%$	$\pm 0.04\%$	$^{+1.74}_{-4.48}\%$	+2.67 -2.25%	+1.64%	$^{+2.10}_{-1.54}\%$	$\pm 1.15\%$

Central value

Sources of uncertainty

Sum of previous 5 columns

PDF+aS unc.

Old unc. from $\frac{1}{2}$ (NNLO-NLO) PDF \rightarrow next slide

• Can compare size of PDF uncertainty/correction from multiple approaches:

 $\Delta(aN3LO) = \sigma(MSHTxNNPDF_aN3LO) - \sigma(PDF4LHC21)$ $\Delta(\text{QED}^{\text{NNLO}}) = \frac{\sigma(\text{MSHTxNNPDF}_{\text{NNLO}_{\text{qed}}}) - \sigma(\text{MSHTxNNPDF}_{\text{NNLO}})}{\sigma(\text{MSHTxNNPDF}_{\text{NNLO}})}$ σ (MSHTxNNPDF_NNLO) $\Delta(\text{QED}^{\text{aN3LO}}) = \frac{\sigma(\text{MSHTxNNPDF}_{aN3LO}_{qed}) - \sigma(\text{MSHTxNNPDF}_{aN3LO})$ σ (MSHTxNNPDF_aN3LO) $\Delta(\text{QED}^{\text{NNLO}})$ Δ (QED^{aN3LO}) $\Delta(aN3LO) [pb]$ -2.16 = -3.80% -1.10%-1.45%Large effects -2.11 = -3.82% -1.10%-1.45%-2.05 = -3.83% -1.11%-1.46%compared to other -2.04 = -3.83% -1.11%-1.46%uncertainties -2.03 = -3.83% -1.11%-1.46%(previous slide) -2.03 = -3.83% -1.12%-1.46%-2.03 = -3.84% -1.12%-1.46%

Other Ongoing or Possible Topics

- Boosted Higgs predictions (<u>dedicated WG1 meeting</u>):
 - Update precise predictions in YR5
 - Lots of open topics: PS uncertainty, EW correction, mass scheme uncertainties....
- STXS Stage 1.3 scheme (in coordination with WG2)
 - Plan cross-experiment responsibility for uncertainty scheme
- Signal-background interference effects in ggH diphoton
 - Computation of interference at NNLO
- <u>At this workshop</u>: ggH+cc and ggH+bb (as bkg to HH and H+c searches).
- Your suggestion?

Bargiela, Caola, von Manteuffel, Tancredi 21; Buccioni, Devoto 22; and Buccioni, Devoto, Djouadi, Ellis, Quevillon, Tancredi 23

Stage 1.2

- Lots of ongoing activities ahead of the YR5 update.
- Please get in touch if you'd like to see what you're working on featured there!

To reach convenors: <u>lhc-higgs-ggf-convener@cern.ch</u> To follow subgroup activities, subscribe to: <u>lhc-higgs-ggf@cern.ch</u>

Thanks for your attention.