

Accessing the Electroweak Phase Transition through Top Quark and Higgs Boson Production

Lisa Biermann

lisa.biermann@psi.ch

21st Workshop of the LHC Higgs Working Group

- **Extensions** of the Standard Model scalar sector...
	- \rightarrow Provide $m_h = 125$ GeV in agreement with collider data
		- \rightarrow Ensured in parameter scans by using ScannerS [Coimbra et al. '13; Mühlleitner et al. '20] linked with HiggsTools [Bahl et al. '22]
	- → *Additionally* provide…
		- DM candidates
- [Sakharov '67]
- New sources of \cal{CP} violation
- **(Strong) first-order electroweak phase transition** (EWPT)
- ⇒ Successful electroweak baryogenesis! [Cohen, Kaplan, Nelson '93; Morrissey, Ramsey-Musolf '12, ..]

Phase diagram of the SM

[Csikor, Fodor, Heitger, '99]

- **Extensions** of the Standard Model scalar sector...
	- \rightarrow Provide $m_h = 125$ GeV in agreement with collider data
		- \rightarrow Ensured in parameter scans by using ScannerS [Coimbra et al. '13; Mühlleitner et al. '20] linked with HiggsTools [Bahl et al. '22]
	- → *Additionally* provide…
		- DM candidates
-
- [Sakharov '67] $\left\{ \bullet \right.$ New sources of \mathcal{CP} violation
	- **(Strong) first-order electroweak phase transition** (EWPT)
	- ⇒ Successful electroweak baryogenesis! [Cohen, Kaplan, Nelson '93; Morrissey, Ramsey-Musolf '12, ..]
	- Extensions considered in this talk:

 $-\sum_i \frac{C_6^i}{\Lambda^2} \mathcal{O}_6^i$ i

$$
V = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}]
$$

+ $\frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2}$

$$
+\frac{1}{2}m_S^2\Phi_S^2 + \frac{\lambda_8}{8}\Phi_S^4 + \frac{\lambda_7}{2}|\Phi_1|^2\Phi_S^2 + \frac{\lambda_8}{2}|\Phi_2|^2\Phi_S^2
$$

broken \mathbb{Z}_2 symmetry $(\Phi_{1,2} \rightarrow \pm \Phi_{1,2})$

[Accessing the EWPT through Top Quark and Higgs Boson Production](#page-0-0) | Lisa Biermann December 6, 2024

Phase diagram of the SM

[Csikor, Fodor, Heitger, '99]

Gunion, Haber '03; Branco et al. '12; ..]

```
R2HDM: \{m_{12}^2, \lambda_5\} \in \mathbb{R} \to \{h, H, A, H^{\pm}\}\C2HDM: \{m_{12}^2, \lambda_5\} \in \mathbb{C} \rightarrow \{h_1, h_2, h_3, H^{\pm}\}\
```
- **Extensions** of the Standard Model scalar sector...
	- \rightarrow Provide $m_h = 125$ GeV in agreement with collider data
		- \rightarrow Ensured in parameter scans by using ScannerS [Coimbra et al. '13; Mühlleitner et al. '20] linked with HiggsTools [Bahl et al. '22]
	- → *Additionally* provide…
		- DM candidates
- [Sakharov '67]
- New sources of \cal{CP} violation
- **(Strong) first-order electroweak phase transition** (EWPT)
- ⇒ Successful electroweak baryogenesis! [Cohen, Kaplan, Nelson '93; Morrissey, Ramsey-Musolf '12, ..]
- Extensions considered in this talk:

$$
V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}]
$$
\n
$$
+ \frac{\lambda_{1}}{2} |\Phi_{1}|^{4} + \frac{\lambda_{2}}{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.}]
$$
\n
$$
+ \frac{1}{2} m_{S}^{2} \Phi_{S}^{2} + \frac{\lambda_{8}}{8} \Phi_{S}^{4} + \frac{\lambda_{7}}{2} |\Phi_{1}|^{2} \Phi_{S}^{2} + \frac{\lambda_{8}}{2} |\Phi_{2}|^{2} \Phi_{S}^{2}
$$
\n
$$
- \sum_{i} \frac{C_{6}^{i}}{\Lambda^{2}} \mathcal{O}_{6}^{i}
$$
\n
$$
= \frac{\sum_{i} \frac{C_{6}^{i}}{\Lambda^{2}} \mathcal{O}_{6}^{i}}{\mathbb{Z}_{2}^{\text{ symmetry: } \Phi_{1,2} \to \Phi_{1,2}, \Phi_{S} \to \Phi_{S}}
$$
\n
$$
+ \frac{\sum_{i} \frac{C_{6}^{i}}{\Lambda^{2}} \mathcal{O}_{6}^{i}}{\mathbb{Z}_{2}^{\text{ symmetry: } \Phi_{1,2} \to \Phi_{1,2}, \Phi_{S} \to \Phi_{S}}
$$

[Accessing the EWPT through Top Quark and Higgs Boson Production](#page-0-0) | Lisa Biermann December 6, 2024 2/12

Phase diagram of the SM

 $V_{\text{F}}(t) = 0$

symmetric-phase

 0.6

 24

 $\rm T_{e}/m_{H_{\rm NS}}$

 1.8

Higgs-phase

 0.2

 0.4

first-order EWPT

[Csikor, Fodor, Heitger, '99]

end point

 S P W PT P_{\rm} $m_k = 72.4 GeV$

 0.8 $R_{uw} = m_h / m_e$

- **Extensions** of the Standard Model scalar sector…
	- \rightarrow Provide $m_h = 125$ GeV in agreement with collider data
		- \rightarrow Ensured in parameter scans by using ScannerS [Coimbra et al. '13; Mühlleitner et al. '20] linked with HiggsTools [Bahl et al. '22]
	- → *Additionally* provide…
		- DM candidates
- [Sakharov '67]
- New sources of $\cal CP$ violation
- **(Strong) first-order electroweak phase transition** (EWPT)
- ⇒ Successful electroweak baryogenesis! [Cohen, Kaplan, Nelson '93; Morrissey, Ramsey-Musolf '12, ..]
- Extensions considered in this talk:

$$
V = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}\right]
$$

+ $\frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 (\Phi_1^{\dagger} \Phi_2^{\dagger})$
+ $\frac{1}{2} m_S^2 \Phi_S^2 + \frac{\lambda_8}{8} \Phi_S^4 + \frac{\lambda_7}{2} |\Phi_1|^2 \Phi_S^2 + \frac{\lambda_8}{2} |\Phi_2|^2 \Phi_S^2$
- $\sum_i \frac{C_6^i}{\Lambda^2} O_6^i$ $\frac{\text{W softly broken } Z_2 \text{ symmetry}}{(\Phi_{1,2} \to \pm \Phi_{1,2})}$

[Accessing the EWPT through Top Quark and Higgs Boson Production](#page-0-0) | Lisa Biermann December 6, 2024 2/12

Phase diagram of the SM

[Csikor, Fodor, Heitger, '99]

- v3:
	- Multi-step phase tracking
	- Calculation of the false vacuum decay and characteristic temperatures
	- Sourced gravitational wave spectra
- 'Strength' of the first-order EWPT:

$$
\xi(T) \equiv \frac{\overline{\omega}_{\text{EW}}(T)}{T}, \quad \overline{\omega}_{\text{EW}}(T=0) = 246 \,\text{GeV}
$$

Strong first-order EWPT: $\left|\xi_c \equiv \xi(T = T_c) \gtrsim 1\right|$ (baryon wash-out condition) *but*: PT takes place at $T \sim T_p < T_c$ [Morrissey, Ramsey-Musolf '12]

 $T(T)$

(T_c only prerequisite for PT \rightarrow vacuum trapping! [Baum et al. '21; Biekötter et al. '21/'23]) [Accessing the EWPT through Top Quark and Higgs Boson Production](#page-0-0) | Lisa Biermann December 6, 2024 December 6, 2024 3/12

 $T = T_c$ T _{$-$} T _{$-$} T _{T} T _{T} T _{T} T _{T $-$} $T-T$ $Tr T_4$

Electroweak Phase Transitions from a Collider Angle

LB[, C. Borschensky, C. Englert,](https://inspirehep.net/literature/2818234) [M. Mühlleitner, W. Naskar](https://inspirehep.net/literature/2818234) [\[arXiv:2408.08043\]](https://inspirehep.net/literature/2818234)

Electroweak Phase Transitions from a Collider Angle

Scalar-Fermion Dim-6 2HDM-EFT

• Can we have **dim-6 enhanced** EWPTs in a Type-2 2HDM with

 $\xi_c^{\text{d4}} < 1 \xrightarrow{\text{dim-6}} \xi_c^{\text{d6}} \gtrsim 1$?

2HDM extended by dim-6 top-Yukawa modifications:

$$
V_{\rm d6}^{(0)} = V_{\rm d4}^{(0)}(\Phi_1, \Phi_2) - \sum_{ijk} \frac{C_{Qt}^{i(jk)}}{\Lambda^2} \mathcal{O}_{Qt}^{i(jk)}
$$

Anisha, D. Azevedo, **LB**[, C. Englert, M. Mühlleitner](https://inspirehep.net/literature/2721831) [\[arXiv:2311.06353\]](https://inspirehep.net/literature/2721831)

$$
\begin{array}{|c|c|} \hline \mathcal{O}_{Qt}^{1(12)} & (\overline{Q}_L\, t_R\, \widetilde{\Phi}_1) (\Phi_1^\dagger \Phi_2) \\ \mathcal{O}_{Qt}^{1(21)} & (\overline{Q}_L\, t_R\, \widetilde{\Phi}_1) (\Phi_2^\dagger \Phi_1) \\ \mathcal{O}_{Qt}^{2(11)} & (\overline{Q}_L\, t_R\, \widetilde{\Phi}_2) (\Phi_1^\dagger \Phi_1) \\ \mathcal{O}_{Qt}^{2(22)} & (\overline{Q}_L\, t_R\, \widetilde{\Phi}_2) (\Phi_2^\dagger \Phi_2) \end{array}
$$

Scalar-Fermion Dim-6 2HDM-EFT

• Can we have **dim-6 enhanced** EWPTs in a Type-2 2HDM with

 $\xi_c^{\text{d4}} < 1 \xrightarrow{\text{dim-6}} \xi_c^{\text{d6}} \gtrsim 1$?

2HDM extended by dim-6 top-Yukawa modifications:

$$
V_{\rm d6}^{(0)} = V_{\rm d4}^{(0)}(\Phi_1, \Phi_2) - \sum_{ijk} \frac{C_{Qt}^{i(jk)}}{\Lambda^2} \mathcal{O}_{Qt}^{i(jk)}
$$

[\[arXiv:2311.06353\]](https://inspirehep.net/literature/2721831)

Anisha, D. Azevedo, **LB**[, C. Englert, M. Mühlleitner](https://inspirehep.net/literature/2721831)

$$
\begin{array}{c|c} \mathcal{O}_{Qt}^{1(12)} & (\overline{Q}_L\, t_R\, \widetilde{\Phi}_1)(\Phi_1^\dagger \Phi_2) \\ \mathcal{O}_{Qt}^{1(21)} & (\overline{Q}_L\, t_R\, \widetilde{\Phi}_1)(\Phi_2^\dagger \Phi_1) \\ \mathcal{O}_{Qt}^{2(11)} & (\overline{Q}_L\, t_R\, \widetilde{\Phi}_2)(\Phi_1^\dagger \Phi_1) \\ \mathcal{O}_{Qt}^{2(22)} & (\overline{Q}_L\, t_R\, \widetilde{\Phi}_2)(\Phi_2^\dagger \Phi_2) \end{array}
$$

• Redefinition of Yukawa coupling to obtain dim-4 Yukawa interaction shifts dim-6 effects into coupling modifiers

$$
\begin{aligned} \boxed{ht\bar{t}} \quad \xi^t_h &= \frac{\cos\alpha}{\sin\beta} + \frac{v^3}{M_t}\frac{1}{\sqrt{2}\Lambda^2} \left[-C_Q^{2(22)}\cos\alpha\sin^2\beta + \cos\beta\sin\beta\sin\alpha\,\,\left(C_Q^{1(12)} + C_Q^{1(21)} + C_Q^{2(11)}\right)\right] \\ \boxed{Ht\bar{t}} \quad \xi^t_H &= \frac{\sin\alpha}{\sin\beta} + \frac{v^3}{M_t}\frac{1}{\sqrt{2}\Lambda^2} \left[-C_Q^{2(22)}\sin\alpha\sin^2\beta - \cos\beta\sin\beta\cos\alpha\,\,\left(C_Q^{1(12)} + C_Q^{1(21)} + C_Q^{2(11)}\right)\right] \\ \frac{A t \gamma_5 \bar{t}}{A t \gamma_5 \bar{t}} \quad \xi^t_A &= \cot\beta + \frac{v^3}{M_t}\frac{1}{\sqrt{2}\Lambda^2} \left[\cos\beta\,\,C_Q^{1(12)}\right] \\ \end{aligned}
$$

Coupling modifications for $\xi_c^{\text{d6}} \gtrsim 1\,$ (individual C^i_{Qt} choices):

c h signal strength constraints

$t\bar{t}$ **production**

Anisha, D. Azevedo, **LB**[, C. Englert, M. Mühlleitner](https://inspirehep.net/literature/2721831) [\[arXiv:2311.06353\]](https://inspirehep.net/literature/2721831)

• Underabundance of resonant H/A production if $\zeta_c^{\text{d6}} \gtrsim 1$ achieved through variation of $C_{Qt}^{1(12)}$

- \Rightarrow If SFOEWPT realized via $C_{Qt}^{1(12)}$ the current LHC BSM sensitivity is *overestimated*!
- $C^{2(22)}_{Qt}$ can lead to a 20 % enhancement for $H\to t\bar t$ while $A\to t\bar t$ is unchanged
- *But*: Sensitivity for resonant $t\bar{t}$ production is already limited at dim-4 due to destructive signal-background interference [Gaemers, Hoogeveen, '84; Jung, Song, Yoon '15; Basler et al. '19]
- Possible further reduction in signal rate does not change observed outcome qualitatively, experimental strategies remain valid

$t\bar{t}t\bar{t}$ production

Anisha, D. Azevedo, **LB**[, C. Englert, M. Mühlleitner](https://inspirehep.net/literature/2721831) [\[arXiv:2311.06353\]](https://inspirehep.net/literature/2721831)

• Four-top final state does not suffer from destructive signal-background interference \rightarrow Sensitivity to resonances not limited by interference!

[Kanemura et al. '15; Alvarez et al. '17/'19; Blekman et al. '22; Anisha et al. '23]

- \rightarrow **Increase** of cross section via $C_{Qt}^{2(22)}$
- \to **Decrease** of cross section via $C_{Qt}^{1(12)}$ and $C_{Qt}^{1(21)}$, $C_{Qt}^{2(11)} \Rightarrow$ **LHC sensitivity** overestimated!

Purely Scalar Dim-6 2HDM-EFT

Anisha, **LB**[, C. Englert, M. Mühlleitner](https://inspirehep.net/literature/2067433) [\[arXiv:2204.06966\]](https://inspirehep.net/literature/2067433)

 $(\Phi_2^{\dagger} \Phi_2)^3$

 $(\Phi_1^{\dagger} \Phi_1)(\Phi_2^{\dagger} \Phi_2)^2$

 $(\Phi_1^{\dagger} \Phi_2)(\Phi_2^{\dagger} \Phi_1)(\Phi_2^{\dagger} \Phi_2)$

 $^{121222}_{6}$ | $1(\Phi_{1}^{\dagger}\Phi_{2})^{2}(\Phi_{2}^{\dagger}\Phi_{2})$ + h.c.

• Can we have **dim-6 enhanced** strong first-order EWPTs in a Type-2 2HDM?

$$
\xi_c^{\rm d4} < 1 \xrightarrow{\rm dim\text{-}6} \xi_c^{\rm d6} \gtrsim 1
$$

 $\mathcal{O}_6^{1111111}$

 \mathcal{O}_6^{111122}
 \mathcal{O}_6^{122111}

 \mathcal{O}_6^{121211}

2HDM extended by scalar dim-6 operators:

$$
V^{(0)}_{\rm d6}=V^{(0)}_{\rm d4}(\Phi_1,\,\Phi_2)-\sum_i\frac{C_6^i}{\Lambda^2}\mathcal{O}_6^i
$$

• Absorb dim-6 contributions (to scalar mass matrix) in shifts $\lambda_i \to \lambda_i + \delta \lambda_i$ and $m_{12}^2 \to m_{12}^2 + \delta m_{12}^2$

 $(\Phi_1^{\dagger} \Phi_1)^2 (\Phi_2^{\dagger} \Phi_2)$ $\left| \right. \mathcal{O}_6^{112222}$

 $(\Phi_1^{\dagger} \Phi_2)^2 (\Phi_1^{\dagger} \Phi_1)$ + h.c. $\left\| \begin{array}{c} \mathcal{O}_6^{121222} \end{array} \right\|$

3 \mathcal{O}_6^{222222}

 $\left[\begin{array}{c} \Phi_1 \end{array}\right] \left[\begin{array}{c} \mathcal{O}_6^{122122} \end{array}\right]$

 \mathcal{O}_6^{112222}

 $(\Phi_1^{\dagger} \Phi_1)^2$

 $(\Phi_1^{\dagger} \Phi_2)(\Phi_2^{\dagger} \Phi_1)(\Phi_1^{\dagger}$

 \Rightarrow SFOEWPT achievable in agreement with experimental constraints \checkmark

 -1.0 -0.5 $\frac{0.0}{C_6^{222222}} / \Lambda^2$ [1/TeV²] 1.0 $0.7 - 1.0$ 0.8 0.9 1.0 1.1 ზ., $\xi_c^{\text{d4}} = 0.905$ impact of C_6^i on $\xi_c^{\rm d6}$ for $\xi_c^{\rm d4} \simeq 0.9$

$t\bar{t}$ production

 \rightarrow $(1 - \xi_c^{d4}) \propto$ resonant modifications

No phenomenologically observable modifications neither for resonant production, nor for interference

hh **production**

Anisha, **LB**[, C. Englert, M. Mühlleitner](https://inspirehep.net/literature/2067433) [\[arXiv:2204.06966\]](https://inspirehep.net/literature/2067433)

ϵ_6^{i} for $\xi_c^{\text{d6}} \simeq 1$

- → **Decreased** continuum $\propto (1 \xi_c^{d4})$ due to enhancement of λ_{hhh} up to $\mathcal{O}(50\%)$ [Baglio et al. '20]
- \rightarrow **Resonant** modifications up to factor 6 correlated with modification of λ_{Hhh}
- \Rightarrow Constraining ξ_c via *separate* measurement of continuum and on-shell H production (*but* low $BR(H \to hh)$

on-shell production and

Uniform C_6^i for $\xi_c^{d6} \simeq 1$

di-Higgs continuum less statistically limited

- **Top-philic** sample plus **Higgs-philic** sample
- Higgs-philic *H* suffer from low $\xi_c^{\text{d4}} \to \text{large}$ Higgs potential modifications are required to achieve $\xi_c^{d6} \gtrsim 1 \rightarrow$ decreased continuum ratio down to -50%
- \rightarrow Resonant enhancements up to 2.5 for cross section values of $\mathcal{O}(fb)$
- \Rightarrow Anticipate LHC sensitivity in $b\bar{b}b\bar{b}$ and $b\bar{b}\tau\bar{\tau}$ channels!

Probing the EWPT via hh and hhh

LB[, C. Borschensky, C. Englert, M. Mühlleitner, W. Naskar](https://inspirehep.net/literature/2818234) [\[arXiv:2408.08043\]](https://inspirehep.net/literature/2818234)

Additional resonantly produced BSM scalars can lead to large enhancements of $hh(h)$ rates

[Basler et al. '19; Abouabid et al. '22; Dawson et al. '23; Stylianou, Weiglein '24]

- **u**t talk by **Osama Karkout** on Thursday on multi-Higgs production and EWPTs in the Two-Real-Singlet model [\[Karkout et al., '24\]](https://inspirehep.net/literature/2779175)
- \bullet hh and hhh cross sections can be enhanced for $\xi_p > 1$ (while showing clear correlation)
- \rightarrow Relative enhancement larger for hhh
	- \rightarrow **R2HDM**: $H \rightarrow hh$ probed in wider kinematic range through nested Hh production and new resonant $H \to hhh$ decays
	- **C2HDM**: additional neutral (\mathcal{CP} -mixed) resonances lead to even larger enhancement of hhh over $\tilde{h}h$

Probing the EWPT via hh and hhh

LB[, C. Borschensky, C. Englert, M. Mühlleitner, W. Naskar](https://inspirehep.net/literature/2818234) [\[arXiv:2408.08043\]](https://inspirehep.net/literature/2818234)

Additional resonantly produced BSM scalars can lead to large enhancements of $hh(h)$ rates [Basler et al. '19; Abouabid et al. '22; Dawson et al. '23; Stylianou, Weiglein '24]

ut talk by **Osama Karkout** on Thursday on multi-Higgs production and EWPTs in the Two-Real-Singlet model [\[Karkout et al., '24\]](https://inspirehep.net/literature/2779175)

- SM \rightarrow **N2HDM**: *hhh* enhanced by factor of 20 compared to hh enhancement while *not* showing overly anomalous behaviour in hh
	- \Rightarrow Look for hhh even if hh seems SM-like!

Conclusions

- BSM physics that allows for a **strong first-order EWPT** (SFOEWPT) might be close to the TeV scale with LHC-relevant implications:
- \rightarrow Modifications of the top-Higgs interactions in a 2HDM allow for an SFOEWPT and can (further) reduce sensitivity in $t\bar{t}$ and $t\bar{t}t\bar{t}$
- \rightarrow Purely scalar dynamics that drive an SFOEWPT for a 2HDM modify $t\bar{t}$ (not measurable) and hh (continuum reduction and **resonant enhancement** within LHC reach)
- → Significant **enhancement of triple Higgs production rate** possible together with almost SM-like di-Higgs production in N2HDM for SFOEWPT points!
- \Rightarrow We can derive indirect constraints on the EWPT from top-pair and multi-Higgs production measurements!

Mass Spectrum and ξ_n

LB[, C. Borschensky, C. Englert, M. Mühlleitner, W. Naskar](https://inspirehep.net/literature/2818234) [\[arXiv:2408.08043\]](https://inspirehep.net/literature/2818234)

- \rightarrow EWPT driven by light spectra of BSM scalars
- \rightarrow Stronger PTs: Most points have correlated resonant $H \rightarrow hh$ and $Hh \rightarrow hhh \rightarrow$ wider phase space \Rightarrow larger hhh enhancement

Invariant Mass Distributions

BP1: largely enhanced

(*hhh* enhancement \times 4 larger than *hh* enhancement)

 $m_H \simeq 2m_h$

BP2: SM-like point

- Large enhancement in resonance region
- Underproduction for $M_{hh} \gtrsim m_H$ (destructive interference between triangle and box topologies enhanced)

LB[, C. Borschensky, C. Englert, M. Mühlleitner, W. Naskar](https://inspirehep.net/literature/2818234) [\[arXiv:2408.08043\]](https://inspirehep.net/literature/2818234)

- Threshold region $M_{hhh} \simeq 3m_h$ probes wider range of $M_{h_i h_j} \simeq 2m_H$ enhancement $(pp \to Hh, H \to hh)$
- \rightarrow Comparably larger enhancement of hhh compared to hh

Interference in $t\bar{t}$ **vs in** $t\bar{t}t\bar{t}$

Top-Pair Production $t\bar{t}$

[Gaemers, Hoogeveen, '84; Jung, Song, Yoon '15]

Four-Top Final State $t\bar{t}t\bar{t}$

[Anisha, O. Atkinson, A. Bhardwaj, C. Englert, W. Naskar](https://inspirehep.net/literature/2633019) [\[arXiv:2302.08281\]](https://inspirehep.net/literature/2633019)

- Destructive interference between $gg \to H_i \to t\bar{t}$ and non-resonant amplitude contribution $qq \rightarrow t\bar{t}$
- \rightarrow Resonance is removed by interference!
- Resonance is robust against interference!