LHCHWG Workshop 06/12/2024

LHCHWG Workshop STXS 1p3 proposal

(University of Hamburg) On behalf of WG2

STXS in a nutshell

The primary goal of STXS framework is to minimise the measurement dependence on theory predictions without losing sensitivity

Coverage of the entire phase space and specific regions designed to detect BSM effects, expected in the tails of the pT distribution, at higher pT, where less stat is available

STXS in a nutshell

The primary goal of STXS framework is to minimise the measurement dependence on theory predictions without losing sensitivity

Coverage of the entire phase space and specific regions designed to detect BSM effects, expected in the tails of the pT distribution, at higher pT, where less stat is available

Highly gran ggF, VBF, V

Run-II datas states: acces regions (e.g.

Ratio to SM

CMS HIG-19-010

ATLAS HIGG-2020-20

4

It has been a long road until now

Towards STXS 1.3: more bins

19th LHCHWG Workshop, 28/11/22 - M. Bonanomi

What we had in mind

Ideas for Binning: $gg \rightarrow H$.

What we had in mind

Ideas for Binning

WG2: Higgs Properties subgroup meetings

	June 2024		
$gg \rightarrow H$ • Stage 1.3 • Add more low- p_T^H		10 Jun	STXS 1.3 finalization - additi
	March 20	024	
Add more high- p_T^H \rightarrow Precise bin bou		27 Mar	STXS 1.3 finalization - addit
Clarify to mean ha	February	2024	
Stage 2	particular		
Split ≥ 2-jet bin in		29 Feb	STXS 1.3 finalization (take 2)
\rightarrow Primarily as ba \rightarrow Consider wheth		15 Feb	[postponed] STXS 1.3 finaliz
023-11-15 Frank Tackmann	Decembe	er 2023	
		14 Dec	STXS 1.3 finalization

September 2023

 27 Sept	WG2: CP violation in ttH inte
26 Sept	WG2 WG3 joint meeting on 0
 25 Sept	WG2 STXS in Decay discuss

ional studies

tional studies

zation (take 2)

eractions

CP violation in extended Higgs sector

sion

Where do we stand now

Why STXS Stage 1.3?

- STXS Stage 1.2 was specifically designed for Run-II. When looking at the current status of experimental results (especially combinations of different channels), it is clear that higher granularity is needed
- Need to move to a solid base for Run-III, increasing granularity of Stage 1.2
- Need to target EFT and CPV with more specific bins and observables

On which basis to build?

- Increase granularity, but baring in mind that Run-III stat ~ Run-II stat
- STXS 1.3 should be an incremental change, ideally backward compatible, and not pose a large workload on the analyses that use it
- Backward compatibility to make possible combination of results (thinking about the different c.o.m energies) and/or interpretations if the experiments wish to do so. More drastic changes to be introduced in Stage 2 (for HL-LHC era)

From STXS 1.2: ttH

Increase granularity and start measuring all STXS bins in ttH

- Enough statistics available
- Solid splittings at pT(H) = 450 GeV
- Additional bin at pT(H) = 650 GeV

Start measuring tH independently

• Independent (inclusive) tH bins, dashed tWH, tHq

For STXS Stage 2:

• Introduce splitting in CP-sensitive observables

Increase granularity and start measuring all STXS bins in ttH

- Enough statistics available
- Solid splittings at pT(H) = 450 GeV
- Additional bin at pT(H) = 650 GeV

Start measuring tH independently

• Independent (inclusive) tH bins, dashed tWH, tHq

For STXS Stage 2:

• Introduce splitting in CP-sensitive observables

From STXS 1.2: V(lep)H

Increase granularity and measure all bins

- Enough statistics available
- Solid splittings at pT(H) = 400 GeV
- Additional bin at pT(H) = 600 GeV

Start measuring dashed bins

For STXS Stage 2:

• Introduce splitting in CP-sensitive observables

Increase granularity and measure all bins

- Enough statistics available
- Solid splittings at pT(H) = 400 GeV
- Additional bin at pT(H) = 600 GeV

Start measuring dashed bins

For STXS Stage 2:

• Introduce splitting in CP-sensitive observables

LHCHWG Workshop, 06/12/2024 - M. Bonanomi

Make Njet splitting in 250 < pT(V) < 400 GeV solid

From STXS 1.2: ggH

- 1 jet bin: add splitting at pT(H) = 30 GeV
- pT(H) > 200 Gev: add splitting at 1 TeV

 $gg \rightarrow H$

Start probing CP-sensitive observables

• Dashed boundaries in
$$\Delta \phi_{jj}$$

at $[-\pi, \frac{\pi}{2}, 0, \frac{\pi}{2}, \pi]$

• Leave $p_T^{H_{jj}}$ and nJet bins

To STXS 1.3: ggH

From STXS 1.2: qqH

Extend granularity at high pT in $m_{ii} > 350$ GeV

- Introduce a bin splitting at pT(H) = 450 GeV
- In the bin at pT(H) > 450 GeV, leave dashed m_{ii} bins without any p_T^{Hjj} splitting

LHCHWG Workshop, 06/12/2024 - M. Bonanomi

Start probing CP-sensitive observables up to 450 GeV

• Dashed boundaries in
$$\Delta \phi_{jj}$$

at $[-\pi, \frac{\pi}{2}, 0, \frac{\pi}{2}, \pi]$

TO STXS 1.3: qqH Stage 1.3 $= \mathsf{VBF} + V(\rightarrow qq)H$ EW qqH= 0-jet = 1-jet \geq 2-jet $m_{jj}\left[0,350 ight]$ m_{jj}

0

60

120

350

0

 ${}^{25}p_T^{Hjj}\infty$

Extend granularity at high pT in $m_{ii} > 350$ GeV

- Introduce a bin splitting at pT(H) = 450 GeV
- In the bin at pT(H) > 450 GeV, leave dashed m_{ii} bins without any p_T^{Hjj} splitting

LHCHWG Workshop, 06/12/2024 - M. Bonanomi

Start probing CP-sensitive observables up to 450 GeV

• Dashed boundaries in $\Delta \phi_{ii}$ at $[-\pi, \frac{\pi}{2}, 0, \frac{\pi}{2}, \pi]$

STXS 1.3: qqH - boosted topology

Alternative proposal to capture events with large-radius jets

- Split qqH STXS into two bins, targeting V(qq)H and VBF
- Split as a function of m_v, thus enhancing sensitivity to fat jets

Pros:

- Captures > 95% of the V(qq)H boosted topology
- More cumbersome, but still backwards compatible, since VBF contamination in VH-dominant bins is less than 10%

Cons:

- Introduction of a new (and composite) observable
- Top-level splitting of the qqH bin could (needlessly) increase complexity for non-boosted analyses

 $\max(m(j_1), m(j_2))$, No. jet > 1, $\max(m(j_1), m(j_2))$ > 60 GeV $m(j_1j_2)$, No. jet > 1, max(m(j_1), m(j_2)) < 60 GeV

STXS 1.3: qqH - boosted topology

Alternative proposal to capture events with large-radius jets

- Split qqH STXS into two bins, targeting V(qq)H and VBF
- Split as a function of m_v, thus enhancing sensitivity to fat jets

Pros:

- Captures > 95% of the V(qq)H boosted topology
- More cumbersome, but still backwards compatible, since VBF contamination in VH-dominant bins is less than 10%

Cons:

- Introduction of a new (and composite) observable
- Top-level splitting of the qqH bin could (needlessly) increase complexity for non-boosted analyses

Beyond STXS 1.3

Target V(qq)H boosted topology

- Split qqH STXS into two bins, targeting V(qq)H and VBF
- Split as a function of m_V , thus enhancing sensitivity to fat jets

Figure 12: Proposal for an extension of the current STXS binning for the $t\bar{t}H$ production mode. Each bin in $p_{T,H}$ is further split in bins of either $b_2^{\text{lab}}, \Delta \eta_{t\bar{t}}^{t\bar{t}}$, or $|\cos \theta^*|$.

arXiv:2406.03950

$$m_{V} = \begin{cases} m(j_{1}), \text{ No. jet} = 1 \\ max(m(j_{1}), m(j_{2})), \text{ No. jet} > 1, max(m(j_{1}), m(j_{2})) > 60 \text{ GeV} \\ m(j_{1}j_{2}), \text{ No. jet} > 1, max(m(j_{1}), m(j_{2})) < 60 \text{ GeV} \end{cases}$$

Explore ttH CPV potential

• Extend STXS Stage 1.2 binning with more pT(H) splits

• Include splitting in CP-sensitive observables (e.g. $|\cos(\theta^*)|$, $\Delta \eta_{t\bar{t}}$, b_2^{lab})

After a (more than) <u>year-long of discussions</u>, we are now proposing STXS Stage 1.3 binning!

- Many thanks to all the people involved in the discussions and to those who provided inputs and contributed to the studies
- We would like to make this proposal official and document it in a LHCHWG note
- If agreed upon, the proposal should be followed up by the experiments for the calculation of the uncertainties
- The studies for Stage 1.3 (LHC Run-III) already set the bases for the future developments of Stage 2.0 (HL-LHC), which are already ongoing

the official reference for the method to compute Stage 1.3 uncertainties

In parallel, we are working on the finalisation of the uncertainty note for STXS Stage 1.2, which will used as

BACKUP SLIDES

Beyond STXS 1.3

Figure 1: Sketch illustrating the rest frame definition adopted in this work. The rest frame X is shown here, defined by $p_X = 0$, where X = H, $t\bar{t}$, $t\bar{t}H$.

Figure 12: Proposal for an extension of the current STXS binning for the $t\bar{t}H$ production mode. Each bin in $p_{T,H}$ is further split in bins of either $b_2^{\text{lab}}, \Delta \eta_{t\bar{t}}^{t\bar{t}}$, or $|\cos \theta^*|$.

arXiv:2406.03950

observable	definition	frame	reference
$p_{T,H}$	_	lab, $t\bar{t}, t\bar{t}H$	-
$\Delta\eta_{tar{t}}$	$ \eta_t-\eta_{ar t} $	lab, $H, t\bar{t}H$	-
$\Delta \phi_{tar{t}}$	$ \phi_t-\phi_{ar t} $	lab, $H, t\bar{t}H$	-
$m_{tar{t}}$	$(p_t + p_{ar{t}})^2$	frame-invariant	-
$m_{tar{t}H}$	$(p_t + p_{ar{t}} + p_H)^2$	frame-invariant	-
$ \cos heta^* $	$\frac{ \boldsymbol{p}_t \!\cdot\! \boldsymbol{n} }{ \boldsymbol{p}_t \!\cdot\! \boldsymbol{n} }$	$tar{t}$	[74, 91]
b_1	$rac{(oldsymbol{p}_t imes oldsymbol{n}) \cdot (oldsymbol{p}_{ar{t}} imes oldsymbol{n})}{p_{T,t} p_{T,ar{t}}}$	all	[82]
b_2	$rac{(oldsymbol{p}_t{ imes}oldsymbol{n}){\cdot}(oldsymbol{p}_{ar{t}}{ imes}oldsymbol{n})}{ oldsymbol{p}_t ~~ oldsymbol{p}_{ar{t}} }$	all	[82]
b_3	$rac{p_t^x \ p_{ar t}^x}{p_{T,t} p_{T,ar t}^x}$	all	[82]
b_4	$rac{p_t^z \ p_{ar{t}}^z}{ oldsymbol{p}_t \ oldsymbol{p}_{ar{t}} }$	all	[82]
ϕ_C	$\arccos\left(\frac{ (\boldsymbol{p}_{p_1} \times \boldsymbol{p}_{p_2}) \cdot (\boldsymbol{p}_t \times \boldsymbol{p}_{\bar{t}}) }{\left \boldsymbol{p}_{p_1} \times \boldsymbol{p}_{p_2}\right \left \boldsymbol{p}_t \times \boldsymbol{p}_{\bar{t}}\right }\right)$	H	[84]

Table 1: Overview of the CP-sensitive observables considered in this work, including their definition, the rest frames in which they are analysed, and references where they are discussed in more detail.

Explore ttH CPV potential

• Extend STXS Stage 1.2 binning with more pT(H) splits

• Include splitting in CP-sensitive observables (e.g. $|\cos(\theta^*)|$, $\Delta \eta_{t\bar{t}}$, b_2^{lab})

