

gg → ZH: NLO Differential Prediction

Marco Vitti (Karlsruhe Institute of Technology, TTP and IAP)
The 21th Workshop of the LHC Higgs Working Group, CERN - 6.12.24

gg → *ZH* @ LO

- lacksquare O($lpha_{s^2}$) correction to $\sigma(pp \rightarrow ZH)$
- lacktriangle NNLO suppression wrt to qar q o ZH compensated by larger gluon luminosity
- Contributes to ~ 6% of $\sigma(pp \rightarrow ZH)$ for $\sqrt{s} = 14$ TeV
- NLO QCD corrections required to stabilize theoretical prediction
 - ~25% scale uncertainty @ LO
 - NLO typically large for gg-initiated processes

$gg \rightarrow ZH$ @ NLO in QCD - Ingredients

Virtual corrections (2 → 2, two loops) - interference with LO

Real emission $(2 \rightarrow 3$, one loop) - squared amplitudes

$gg \rightarrow ZH$ @ NLO in QCD - Ingredients

Virtual corrections (2 → 2, two loops) - interference with LO

Main problem in the NLO calculation

 $\label{eq:multi-scale} \mbox{Multi-scale } (m_{\mbox{\scriptsize Z}}, m_{\mbox{\scriptsize H}}, m_{\mbox{\scriptsize t}}, s, t) \mbox{ two-loop box integrals} \\ \mbox{No full analytic results}$

Complete NLO Predictions

■ Sector decomposition ⊕ High-Energy expansion

[Chen, Davies, Heinrich, Jones, Kerner, Mishima, Schlenk, Steinhauser - 2204.05225]

Virtual corrections

- pySecDec for $p_T < 200 \,\mathrm{GeV}$
- \bullet HE exp for $p_T > 200 \,\mathrm{GeV}$

Real emission

GoSam & in-house C++ code

■ pT expansion ⊕ High-Energy expansion [Degrassi, Gröber, MV, Zhao - 2205.02769]

Virtual corrections

- lacktriangle pT exp for $|\hat{t}| < 4m_t^2$
- lacktriangle HE exp for $|\hat{t}| > 4m_t^2$

Real emission

- ◆ RECOLA2 [Denner, Lang, Uccirati 1711.07388]
- MadGraph5 [Alwall et al. 1405.0301]

O(100%) NLO corrections observed

Scale uncertainties reduced: \sim 25% \rightarrow \sim 15%

High-Energy Tails – Z Radiation

- \blacksquare K-factor rapidly increasing for $M_{ZH} > 1 \, {\rm TeV}$
- Effect due to real-emission diagrams where the Z is radiated from an open fermion line
- [Wang, Xu, Xu, Yang 2107.08206]

 Not included in [Chen et al. 2204.05225]

High-Energy Tails – pT Distributions

- Very large NLO corrections for $p_{T,H} > 400 \, \mathrm{GeV}$
- Still K-factor of ~5 after pT cuts

Top Mass Scheme Uncertainty

- Envelope of deviations of MS schemes wrt OS result Same method already used for HH production [Baglio et al. 1811.05692, 2003.03227]
- Uncertainty sensitive to the binning of top-pair threshold peak

Avoid overestimate of uncertainty

Bin Width [GeV]	LO	NLO	
1	$64.01^{+15.6\%}_{-35.9\%}$	$118.6^{+17.2\%}_{-27.0\%}$	
5	$64.01^{+15.3\%}_{-35.6\%}$	$118.6^{+14.7\%}_{-24.9\%}$	
25	$64.01^{+14.0\%}_{-33.1\%}$	$118.6^{+10.9\%}_{-20.8\%}$	
100	$64.01^{+2.0\%}_{-25.3\%}$	$118.6^{+0.6\%}_{-13.7\%}$	
∞	$64.01^{+0\%}_{-23.1\%}$	$118.6^{+0\%}_{-12.9\%}$	

- Top-mass uncertainty ~ scale uncertainty
- lacktriangle Agreement with [Chen et al. 2204.05225] for $M_{ZH}\!>\!400\,{
 m GeV}$

(Predictions for different schemes available only in this region for both papers)

[Degrassi, Gröber, MV, Zhao - 2205.02769]

Plans

■ Update of inclusive prediction for fixed-order $gg \rightarrow ZH$ cross section

Cross-checks in progress between

[Chen, Davies, Heinrich, Jones, Kerner, Mishima, Schlenk, Steinhauser - 2204.05225]

- Provide K-factors for single and double-differential distributions
- Goal: implementation of unified prediction in PowHeg
- Bonus: inclusion of BSM effects via anomalous couplings

Thank you for your attention

Fixed-Order Predictions for $pp \rightarrow ZH$

LO: quark-initiated tree-level contribution

QCD effects: mainly due to Drell-Yan (DY) production followed by $Z^* \rightarrow ZH$ decay

Drell-Yan

Known through N3LO (+30% wrt LO)

[Han, Willenbrock ('91); Hamberg, van Neerven, Matsuura ('92); Brein, Djouadi, Harlander – 0307206; Baglio, Duhr, Mistlberger, Szafron - 2209.06138]

■ Non Drell-Yan - quark-initiated O(1%) wrt LO

[Brein, Harlander, Wiesemann, Zirke - 1111.0761]

Non Drell-Yan - gluon-initiated

EW corrections: known through NLO (-(5-10%) wrt LO)

gg → ZH @ NLO QCD - Inclusive Cross Section

[Wang, Xu, Xu, Yang - 2107.08206]

$$\sqrt{s} = 13 \text{TeV} \qquad \mu_r = \mu_f \quad \sigma_{\text{LO}}^{gg} \quad \sigma_{\text{NLO}}^{gg} \quad \sigma_{pp\to ZH}^{\text{no } gg} \quad \sigma_{pp\to ZH}^{\text{no } gg} \quad \sigma_{\text{NLO}}^{gg,m_t\to\infty} \quad \sigma_{pp\to ZH}^{m_t\to\infty} \\
M_{ZH}/3 \quad 73.56(7) \quad 129.4(3) \quad 784.0(7) \quad 913.4(7) \quad 133.6(6) \quad 917.6(9) \\
M_{ZH} \quad 51.03(5) \quad 101.7(2) \quad 781.1(7) \quad 882.9(7) \quad 106.0(4) \quad 887.2(8) \\
3M_{ZH} \quad 36.62(4) \quad 80.4(2) \quad 780.7(8) \quad 861.1(8) \quad 84.0(3) \quad 864.8(9)$$

[Chen et al. - 2204.05225]

$$\mu_r = \mu_f = M_{ZH}$$

\sqrt{s}	LO [fb]	NLO [fb]		
$13\mathrm{TeV}$	$52.42^{+25.5\%}_{-19.3\%}$	$103.8(3)_{-13.9\%}^{+16.4\%}$		
$13.6\mathrm{TeV}$	$58.06^{+25.1\%}_{-19.0\%}$	$114.7(3)^{+16.2\%}_{-13.7\%}$		
$14\mathrm{TeV}$	$61.96^{+24.9\%}_{-18.9\%}$	$122.2(3)^{+16.1\%}_{-13.6\%}$		

NLO corrections are the same size as LO

$$\sqrt{s} = 13 \text{TeV}$$

$$\mu_r = \mu_f = M_{ZH}/2$$

	То	p-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NL0}^{OS}$	$K = \sigma_{NLO}/\sigma_{LO}$
		On-Shell	$64.01^{+27.2\%}_{-20.3\%}$	—	$118.6^{+16.7\%}_{-14.1\%}$	—	1.85
	$\overline{\mathrm{M}}$	$S, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
2	$\overline{\mathrm{MS}},$	$\mu_t = m_t^{\overline{\rm MS}}(m_t^{\overline{\rm MS}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
	$\overline{\mathrm{M}}$	$\overline{S}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
	Ī	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

gg → ZH @ NLO QCD - Inclusive Cross Section

[Wang, Xu, Xu, Yang - 2107.08206]

$$\sqrt{s} = 13 \text{TeV} \qquad \frac{\mu_r = \mu_f}{M_{ZH}} \begin{vmatrix} \sigma_{\text{LO}}^{gg} & \sigma_{\text{NLO}}^{gg} & \sigma_{pp \to ZH}^{\text{no } gg} & \sigma_{pp \to ZH}^{\text{no } gg} & \sigma_{pp \to ZH}^{\text{no } gg} & \sigma_{pp \to ZH}^{\text{no } gg, m_t \to \infty} & \sigma_{pp \to ZH}^{m_t \to \infty} \\ M_{ZH}/3 & 73.56(7) & 129.4(3) & 784.0(7) & 913.4(7) & 133.6(6) & 917.6(9) \\ M_{ZH} & 51.03(5) & 101.7(2) & 781.1(7) & 882.9(7) & 106.0(4) & 887.2(8) \\ 3M_{ZH} & 36.62(4) & 80.4(2) & 780.7(8) & 861.1(8) & 84.0(3) & 864.8(9) \\ \end{pmatrix}$$

[Chen et al. - 2204.05225]

$$\mu_r = \mu_f = M_{ZH}$$

\sqrt{s}	LO [fb]	NLO [fb]
$13\mathrm{TeV}$	$52.42^{+25.5\%}_{-19.3\%}$	$103.8(3)^{+16.4\%}_{-13.9\%}$
$13.6\mathrm{TeV}$	$58.06^{+25.1\%}_{-19.0\%}$	$114.7(3)^{+16.2\%}_{-13.7\%}$
$14\mathrm{TeV}$	$61.96^{+24.9\%}_{-18.9\%}$	$122.2(3)^{+16.1\%}_{-13.6\%}$

Scale uncertainties reduced by ~30% wrt LO

$$\sqrt{s} = 13 \text{TeV}$$

$$\mu_r = \mu_f = M_{ZH}/2$$

	Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K = \sigma_{NLO}/\sigma_{LO}$
	On-Shell	$64.01_{-20.3\%}^{+27.2\%}$	_	$118.6^{+16.7\%}_{-14.1\%}$	_	1.85
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
2	$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

$gg \rightarrow ZH$ @ NLO vs Drell-Yan contribution

- $gg \rightarrow ZH$ is almost 50% of DY near $M_{ZH} \sim 2 m_t$
- Because of Z-radiated diagrams the gg contribution falls off as rapidly as the DY one (ratio constant at ~ 2%)
- DY obtained using vh@nnlo [Harlander et al 1802.04817]

