Multi-Higgs production from VBS in HEFT

Javier Martínez-Martín¹

¹In collaboration with Rafael L. Delgado, Raquel Gómez-Ambrosio, Alexandre Salas-Bernárdez and Juan J. Sanz-Cillero - 2311.04280v2 - JHEP 03 (2024) 037

The 21st Workshop of the LHC Higgs Working Group 19 November 2024

Outline

- Introduction
 - Motivation
 - Framework
 - Higgs Effective Field Theory (HEFT)
 - Relation to SMEFT
- 2 Amplitudes and cross sections calculations
 - !!! 2h
 - !! / 3h
 - 11 / 4h
- 3 Cross section phenomenology
 - CMS and ATLAS data
 - Benchmark points
 - BP study
- State of the art and next steps
- Conclusions

Motivation

- Understanding the SM as the leading order of an EFT, we would like to find new terms.
- At the current energies, both SMEFT and HEFT are valid descriptions of the currently available LHC data.
- Multi-Higgs measurements at HL-LHC and beyond are crucial to check their validity range.

Framework

- We used the Equivalence theorem approximation where W_L^a ! a .
- Assuming m_h^2 m_W^2 s Λ^2 .
- Using only derivative terms of the Lagrangian up to 2 derivatives (which scale with the energy).
- As a first approximation, only one SMEFT operator is needed (at each EFT dimenson).

Canonical form

HEFT Lagrangian¹

[Appelquist et al. - Phys. Rev. D 22 (1980) 200, Longhitano et al. - Phys. Rev. D 22 (1980) 1166]

$$L_{\text{HEFT}} = \frac{1}{2} @ h@ h + \frac{1}{2} F(h) @ !^{a} @ !^{a} + O(!^{4})$$

Flare function²

[Gómez-Ambrosio, Llanes-Estrada, Salas-Bernárdez and Sanz-Cillero - 2204.01762]

$$F(h) = 1 + a_1 \frac{h}{v} + a_2 \frac{h^{2}}{v^{2}} + a_3 \frac{h^{3}}{v^{3}} + a_4 \frac{h^{4}}{v^{4}} + O(h^5)$$

$$a = \frac{a_1}{2}$$
; $a_2 = b$ with $a_{1,SM} = 2$; $a_{2,SM} = 1$; $a_{3,SM} = 0$; $a_{4,SM} = 0$

 $^{^{1}}$ We only focus on the EW sector. In the conditions where, under the Goldstone equivalence theorem, longitudinal VBS is approximated by Goldstone scattering.

¹Where a_n is the effective coupling of !! with nh. This can be done similarly for the Yukawa sector through the study of to horsesses, see:
nglert et al. - 2308.11722. Gómez-Ambrosio et al. - 2207.09848

Canonical form

HEFT Lagrangian¹

[Appelquist et al. - Phys. Rev. D 22 (1980) 200, Longhitano et al. - Phys. Rev. D 22 (1980) 1166]

$$L_{\text{HEFT}} = \frac{1}{2} @ h@ h + \frac{1}{2} F(h) @ !^{a} @ !^{a} + O(!^{4})$$

Flare function²

[Gómez-Ambrosio, Llanes-Estrada, Salas-Bernárdez and Sanz-Cillero - 2204.01762]

$$F(h) = 1 + a_1 \frac{h}{v} + a_2 \frac{h^{2}}{v^{2}} + a_3 \frac{h^{3}}{v^{3}} + a_4 \frac{h^{4}}{v^{4}} + O(h^5)$$

$$a = \frac{a_1}{2}$$
; $a_2 = b$ with $a_{1,SM} = 2$; $a_{2,SM} = 1$; $a_{3,SM} = 0$; $a_{4,SM} = 0$

Englert et al. - 2308.11722 , Gómez-Ambrosio et al. - 2207.09848

 $^{^{1}}$ We only focus on the EW sector. In the conditions where, under the Goldstone equivalence theorem, longitudinal VBS is approximated by Goldstone scattering.

²Where a_n is the effective coupling of ! ! with nh. This can be done similarly for the Yukawa sector through the study of \overline{t} ! n h processes, see:

Check: Rede ned form

Calculations have also been checked with:

Redefined HEFT Lagrangian

$$L_{\text{HEFT}} = \frac{1}{2} @ h@ h + \frac{1}{2} \hat{F}(h) @ !^{a} @ !^{a} + O(!^{4})$$

Redefined Flare function³

$$\hat{F}(h) = 1 + \hat{a}_2 \cdot \frac{h^{2}}{v^{2}} + \hat{a}_3 \cdot \frac{h^{3}}{v^{3}} + \hat{a}_4 \cdot \frac{h^{4}}{v^{4}} + \mathcal{O}(h^5)$$

$$\hat{a}_2 = b$$
 a^2 ; $\hat{a}_3 = a_3$ $\frac{4a}{3}$ b a^2 ; $\hat{a}_4 = a_4$ $\frac{3}{2}aa_3 + \frac{5}{3}a^2$ b a^2

Rafael L., Raquel G., Javier M., Alexandre S., Juan J. S.

³This rede nition gives a more direct interpretation of the results, see

Check: Rede ned form

Calculations have also been checked with:

Redefined HEFT Lagrangian

$$L_{\text{HEFT}} = \frac{1}{2} @ h@ h + \frac{1}{2} \hat{F}(h) @ !^a@ !^a + O(!^4)$$

Redefined Flare function³

$$\hat{F}(h) = 1 + \hat{a}_2 \frac{h^{2}}{v} + \hat{a}_3 \frac{h^{3}}{v} + \hat{a}_4 \frac{h^{4}}{v} + O(h^5)$$

$$\hat{a}_2 = b$$
 a^2 ; $\hat{a}_3 = a_3$ $\frac{4a}{3}$ b a^2 ; $\hat{a}_4 = a_4$ $\frac{3}{2}aa_3 + \frac{5}{3}a^2$ b a^2

³This rede nition gives a more direct interpretation of the results, see:

L. Delgado et al. 2311.04280v2

Check: Rede ned form

Calculations have also been checked with:

Redefined HEFT Lagrangian

$$L_{\text{HEFT}} = \frac{1}{2} @ h@ h + \frac{1}{2} \hat{F}(h) @ !^a@ !^a + O(!^4)$$

Redefined Flare function³

$$\hat{F}(h) = 1 + \hat{a}_2 \frac{h^{2}}{v} + \hat{a}_3 \frac{h^{3}}{v} + \hat{a}_4 \frac{h^{4}}{v} + O(h^5)$$

$$\hat{a}_2 = b$$
 a^2 ; $\hat{a}_3 = a_3$ $\frac{4a}{3}$ b a^2 ; $\hat{a}_4 = a_4$ $\frac{3}{2}aa_3 + \frac{5}{3}a^2$ b a^2

³This rede nition gives a more direct interpretation of the results, see:

L. Delgado et al. 2311.04280v2

Relation to SMEFT

SMEFT

SMEFT lagrangian

[Gómez-Ambrosio, Llanes-Estrada, Salas-Bernárdez and Sanz-Cillero - 2207.09848]

$$\angle_{\mathsf{SMEFT}} = \angle_{\mathsf{SM}} + \frac{\times}{n=5} \times \frac{C_i^{(n)}}{\Lambda^{n-4}} \mathcal{O}_i^{(n)}$$

 O_H operator

$$\mathcal{O}_{H}^{(6)} = (H^{y}H) \ (H^{y}H); \ \mathcal{O}_{H}^{(8)} = (H^{y}H)^{2} \ (H^{y}H); \ \mathscr{Q}^{2}$$

SMEFT parameters

$$d = \frac{2v^2c_H^{(6)}}{\Lambda^2} \qquad ; \qquad = \frac{c_H^{(8)}}{2(c_H^{(6)})}$$

Relation to SMEFT

SMEFT

SMEFT lagrangian

[Gómez-Ambrosio, Llanes-Estrada, Salas-Bernárdez and Sanz-Cillero - 2207.09848]

$$\angle_{\mathsf{SMEFT}} = \angle_{\mathsf{SM}} + \frac{\times}{n=5} \times \frac{c_i^{(n)}}{\Lambda^{n-4}} \mathcal{O}_i^{(n)}$$

O_H operator

$$O_H^{(6)} = (H^y H) (H^y H); O_H^{(8)} = (H^y H)^2 (H^y H); e^2$$

SMEFT parameters

$$d = \frac{2v^2c_H^{(6)}}{\Lambda^2} \qquad \qquad = \frac{c_H^{(8)}}{2(c_H^{(6)})^2}$$

Relation to SMEFT

Relation between parameters

Relation with canonical parameters⁴

[Gómez-Ambrosio, Llanes-Estrada, Salas-Bernárdez and Sanz-Cillero - 2207.09848]

$$a_{1}=2 = a = 1 + \frac{d}{2} + \frac{d^{2}}{2} \cdot \frac{3}{4} + + O d^{3}$$

$$a_{2} = b = 1 + 2d + 3d^{2}(1 +) + O d^{3}$$

$$a_{3} = \frac{4}{3}d + d^{2} \cdot \frac{14}{3} + 4 + O d^{3}$$

$$a_{4} = \frac{1}{3}d + d^{2} \cdot \frac{11}{3} + 3 + O d^{3}$$

 a_n for n 7 vanishes at order 1 = 4 .

 $^{^4}a_5$ and a_6 can be found in L. Delgado et al. 2311.04280v2.

11 / 2h

The following results in this section are calculated in the massless limit.

Amplitude⁵

$$T_{\omega\omega o 2h} \stackrel{\mathsf{HEFT}}{=} \quad \frac{\hat{a}_2 s}{v^2} = \\ \stackrel{\mathsf{SMEFT}}{=} \quad \frac{s}{v^2} \ d + 2d^2 \left(1 + \ \right) \ + \ \mathcal{O} \ d^3$$

Cross section

$$\omega\omega \to 2h \stackrel{\mathsf{HEFT}}{=} \frac{8 \ ^3 \ \hat{d}_2^2}{S} \ \frac{S}{16 \ ^2 V^2} \ ^2 = \\ \stackrel{\mathsf{SMEFT}}{=} \frac{8 \ ^3}{S} \ d^2 + 4d^3 \ (1 + \) \ \frac{S}{16 \ ^2 V^2} \ ^2 + O \ d^4$$

⁵Compatible with previous analysis in e.g. Arganda et al. - 1807.09763, Dobado et al. - 1711.10310.

!!! 3h

Amplitude⁶

$$T_{III 3h} \stackrel{\mathsf{HEFT}}{=} \frac{3\hat{\sigma}_3 s}{v^3} =$$

$$\stackrel{\mathsf{SMEFT}}{=} \frac{4s}{v^3} d^2 (1+) + O d^3$$

Cross section

⁶Previous analysis with modi cations in e.g. Gonzalez-Lopez et al. - 2011.13915, Chen et al. - 2105,11500.

!!! 4h

Contributing diagrams

With permutations of external particles, there are a total of 75 diagrams

!!! 4h

Amplitude

$$T_{III \ 4h} \stackrel{\mathsf{HEFT}}{=} \frac{4s}{v^4} \ 3\hat{a}_4 + \hat{a}_2^2 (B \ 1) =$$

$$\stackrel{\mathsf{SMEFT}}{=} \frac{4s}{v^4} d^2 (1 + + B) + O \ d^3 \qquad ! \dots$$

Cross section

!!! 4h

Parameters

Definitions⁷

$$B = f_1 f_2 f_3 f_4 \quad B_{1234} + B_{1324} + B_{1423} + B_{2314} + B_{2413} + B_{3412}$$

$$B_{ijk} = \frac{z_{ij} z_{k}}{2f_i f_j z_{ij}} \quad f_i z_i \quad f_j z_j ; \quad z_{ij} = z_{ji} = \frac{q^2 (p_i p_j)}{(q p_i) (q p_j)} \stackrel{\text{CM}}{=} 2 \sin^2(y_i = 2)$$

$$f_i = \frac{q p_i}{q^2} \stackrel{\text{CM}}{=} k p_i k = \stackrel{p_i}{=} s; \quad z_i = \frac{2k_1 p_i}{q p_i} \stackrel{\text{CM}}{=} 2 \sin^2(y_i = 2)$$

$$q = k_1 + k_2 = p_1 + p_2 + p_3 + p_4$$

$$Z$$

$$n = V_4^{-1} \quad d\Pi_4 B^n; \quad 1 = 0.124984 (10); \quad 2 = 0.0193760 (16)$$

https://github.com/mamupaxs/mamupaxs

⁷Numerical values computed with a personal code, see:

Previous CMS and ATLAS data

Figure: (a) Phys. Rev. Lett. 131 (2023) 041803 [2205.06667] (b) CMS-PAS-HIG-21-005 (c) ATLAS-CONF-2022-050

(d) Phys. Lett. B 842 (2023) 137531 [2206.09401].

- a₁ is relatively well known from Higgs decays at LHC. Close to the SM, up to O(10%).
- $V = a = \frac{a_1}{2}$ $_{2V} = a_{2}$
- Superimposed SMEFT correlation: $a_2 = 2a_1$
- Plotted parabolas: $\hat{a}_2 = 0.2$

Latest CMS and ATLAS data

Figure: (a) Submitted to Phys. Lett. B [2407.13554] (b) Phys. Rev. Lett. 133 (2024) 101801 [2406.09971].

- The constraint on a₂ is driven by the HH categories enriched in VBF HH events.
- The observed (expected) 95% CL interval: 0:6 < a_2 < 1:5 (0:4 < a_2 < 1:6).

Benchmark points

Figure: https://www.hepdata.net/record/ins2808928.

$\mathsf{SMEFT}^{(D=6)}\;\mathsf{BP}$

$$d = 0.1$$

 $a = a_1 = 2 = 1.05$; $b = a_2 = 1.20$
 $a_3 = 0.19$; $a_4 = 0.09$

- d is compatible with the SM deviation range of ATLAS and CMS, $\Delta a = a + 1 + 0.05$ with a + 1 + d = 2.
- d is crucial for the convergence of the expansion.
- $a_{1,SM} = 2$; $a_{2,SM} = 1$ $a_{3,SM} = 0$; $a_{4,SM} = 0$

BP study

!!! 2h (Preliminary)

- SMEFT is suppressed by 1 order of magnitude.
- All of the SM needs to be considered.
- Unitarity studied for pure s-wave.

BP study

- SMEFT is a particular value (blue).
- A 20% variation on a_3 varies the XS by 2 orders of magnitude (SM: $a_3 = 0$).
- The XS vanishes for a particular value.

- a_1 , a_2 and a_3 are set to their SMEFT^(D=6) values. $\overline{s} = 1$ TeV.
- SMEFT is a particular value (blue).
- A 20% variation on a_4 varies the XS by 2 orders of magnitude (SM: $a_4 = 0$).
- The XS doesn't vanish.

Our next steps

Work in progress

Include the complete SM.

Calculating processes wit W_L and masses.

Adding the PDFs for the full processes.

Partial waves and unitarity study.

Possible future works

Higgs self-interactions.

Final-state particles decay.

New-physics models for these couplings.

Beyond VBS processes.

Experimentalists' next steps. HEFT Wishlist

Experimentalists' next steps. HEFT Wishlist

Experimentalists' next steps. HEFT Wishlist

Conclusions

Conclusions

We studied longitudinal VBS using the Goldstone equivalence theorem, the massless approximation, abd O (@).

We computed the analytic expressions for, 23h and 4h production at tree level for SMEFT and HEFT.

We found multi-Higgs production is very suppressed in SMEFT but not in general HEFT scenarios.

There are lots of steps left to take.

This is a very hot topic being worked on nowadays.

THANK YOU SO MUCH!

Outline

Back up

Back up 1. Rede nition of HEFT

Back up 2. HEFT-SMEFT parameters relation

Fields rede nition

Fields rede nition

$$!^{a}!^{a}!^{a}+g(h)!^{a}; h!h+N(1+g(h))\frac{!^{a}!^{a}}{v}$$

Fields rede nition

Fields rede nition

$$!^{a}!!^{a} + g(h)!^{a}; h! h + N (1 + g(h)) \frac{!^{a}!^{a}}{V}$$

HEFT lagrangian

$$L_{HEFT} = \frac{1}{2}@h@h + \frac{1}{2}F(h)@!^a@!^a + O(!^4)$$

Fields rede nition

Fields rede nition

$$!^{a}!!^{a} + g(h)!^{a}; h! h + N (1 + g(h)) \frac{!^{a}!^{a}}{v}$$

Rede ned HEFT lagrangian

$$L_{HEFT} = \frac{1}{2}@h@h + \frac{1}{2}f^{2}(h)@!^{a}@!^{a} + O(!^{4})$$

Fields rede nition

Fields rede nition

$$!^{a}!!^{a} + g(h)!^{a}; h! h + N (1 + g(h)) \frac{!^{a}!^{a}}{V}$$

Rede ned HEFT lagrangian

$$L_{HEFT} = \frac{1}{2}@h@h + \frac{1}{2}f^{A}(h)@!^{a}@!^{a} + O(!^{4})$$

Rede ned are function

$$f^{A}(h) = F(h) 1 + g(h)$$

Appendix 1. Rede nition of HEFT

Flare function rede nition

Normalization

$$N = \frac{a}{2}$$

$$g(h) = a\frac{h}{v} + a^2\frac{h^2}{v^2} + \frac{1}{3}a(b + 4a^2)\frac{h^3}{v^3} + \frac{1}{4}a(a_3 + 4ab + 8a^3)\frac{h^4}{v^4} + O(h^5)$$

Appendix 1. Rede nition of HEFT

Flare function rede nition

Normalization

$$N = \frac{a}{2}$$

$$g(h) = a\frac{h}{v} + a^2 \frac{h^2}{v^2} + \frac{1}{3}a(b + 4a^2)\frac{h^3}{v^3} + \frac{1}{4}a(a_3 + 4ab + 8a^3)\frac{h^4}{v^4} + O(h^5)$$

Flare function

$$F(h) = 1 + a_1 \frac{h}{v} + a_2 \frac{h^{'2}}{v} + a_3 \frac{h^{'3}}{v} + a_4 \frac{h^{'4}}{v} + O(h^5)$$

Appendix 1. Rede nition of HEFT

Flare function rede nition

Normalization

$$N = \frac{a}{2}$$

$$g(h) = a\frac{h}{v} + a^2\frac{h^2}{v^2} + \frac{1}{3}a(b + 4a^2)\frac{h^3}{v^3} + \frac{1}{4}a(a_3 + 4ab + 8a^3)\frac{h^4}{v^4} + O(h^5)$$

Rede ned are function

$$f^{A}(h) = 1 + A_{2} \frac{h^{'2}}{v^{'2}} + A_{3} \frac{h^{'3}}{v^{'3}} + A_{4} \frac{h^{'4}}{v^{'4}} + O(h^{5})$$

Parameters rede nition

Rede ned parameters

$$\mathbf{a}_{2} = \mathbf{b} \quad \mathbf{a}^{2}$$
 $\mathbf{a}_{3} = \mathbf{a}_{3} \quad \frac{4\mathbf{a}}{3} \quad \mathbf{b} \quad \mathbf{a}^{2}$
 $\mathbf{a}_{4} = \mathbf{a}_{4} \quad \frac{3}{2} \mathbf{a}_{3} + \frac{5}{3} \mathbf{a}^{2} \quad \mathbf{b} \quad \mathbf{a}^{2}$

Back up 2. HEFT-SMEFT parameters relation

Parameters

SMEFT parameters

$$d = \frac{2v^2c_H^{(6)}}{\Lambda^2} \qquad ; \qquad = \frac{c_H^{(8)}}{2(c_H^{(6)})^2}$$

Back up 2. HEFT-SMEFT parameters relation

Relation with canonical parameters

Relation with canonical parameters

$$a_{1}=2 = a = 1 + \frac{d}{2} + \frac{d^{2}}{2} \cdot \frac{3}{4} + + O d^{3}$$

$$a_{2} = b = 1 + 2d + 3d^{2}(1 + 1) + O d^{3}$$

$$a_{3} = \frac{4}{3}d + d^{2} \cdot \frac{14}{3} + 4 + O d^{3}$$

$$a_{4} = \frac{1}{3}d + d^{2} \cdot \frac{11}{3} + 3 + O d^{3}$$

Back up 2. HEFT-SMEFT parameters relation

Relation with rede ned parameters

Relation with redefined parameters

$$\hat{a}_2 = d + 2d^2(1+) + O(d^3)$$

$$\hat{a}_3 = \frac{4}{3}d^2(1+) + O(d^3)$$

$$\hat{a}_4 = \frac{1}{3}d^2(1+) + O(d^3)$$