

Status of the Accelerator Complex

Matteo Solfaroli BE/OP Plenary RRB 58th Meeting April 22nd, 2024

Outline

Main issues from 2023: status and impact

- 2024 beam commissioning status
- Outlook for rest of Run3

2023 luminosity production vs main faults

Vacuum module

IMPACT in 2023

- ~5 days lost
- Bunch intensity limited to 1.6e¹¹ p/b
- Difficult to identify <u>intensity</u> <u>limitation</u> (strong dependence on contact quality)
- 2024 LHC operation presently <u>limited to 1.6e¹¹ p/b</u>
- Simulations ongoing to assess impact of beam parameters on power deposition

VISUAL INSPECTION

annealed/plasticised spring on the 212 mm vacuum module due to localized temperature increase to more than 500°C

Consolidation plan:

- 47 replaced during 23/24 EYETS
- 24 foreseen in 24/25
 - No failure expected with ideal contact

IT.L8

- Electrical glitch triggered Inner Triplet (IT) magnets protection ٠
- Fast pressure rise in the cold mass ٠
- **Leak** in vacuum vessels \rightarrow atmospheric pressure in ~8h •
- Fast repair thanks to special cryo procedure ٠

Equivalent risk of failure on others ITs

- Similar bellow extension
- Multiple pressurisations since their installation: NO fault

Mitigation measures

- No intervention planned (IT maintained at cold) •
- **Consolidation planned** for LS3

7/24/2023 3

1.6mm

Target Dump Injection Segmented (TDIS)

- **TDIS:** absorber meant to protect downstream equipment during injection phase
- High-Luminosity compliant devices were installed during LS2
- **2 vacuum leaks**, due to NON-conform bellows led to end of pp operation
- During EYETS 23/24 **both TDIS replaced** with spare ("non-compliant")

NO limitation expected

- Mechanical stress reduced
- Conform spares expected by September 2024

- Main issues from 2023: status and impact
- 2024 beam commissioning status
- Outlook for rest of Run3

Reversed Polarity (RP) optics

Excessive dose deposition on magnets of Inner Triplet region (close to interaction point) can lead to <u>damage and failure</u>

Solutions to **redistribute the radiation**, allowing for longer lifetime of the equipment:

• Local optics change (implemented in P1, as most critical)

Example for IP1

Estimated damage limit:

- 30 MGy for IT
- 90 MGy for D1

2024 LHC schedule ver. 2.0 + Q1+Q2

	First Apr beams @	Stable 6.8 TeV	Collisi 1200	ons with bunches	May				Jun				
Wk	14	15	16	today	18	19	20	21	22	23	24	25	26
Мо	Easter 1	↓ 8	15	22	29	6	13	Whitsup 20	27	3	10	17	24
Tu		Interle	aved				MD 1						
We		commiss &	sioning		ist May								
Th		intensity	ramp up			Ascension	VdM				bi 121		
Fr	-	Cryo reconfig.					program			MD 2	iss G		
Sa		Scrubbing									spare		
Su		Scrubbillig											

- Hardware commissioning completed in time
- First injection on 8th March (3 days ahead of schedule)
- **First STABLE BEAMS** at 6.8 TeV on 5th April (3 days ahead)
- Scrubbing succesful
- Intensity ramp-up ongoing (presently physics with 1983 bunches)

Establishing physics production

- Beam commissioning completed in the 4 weeks allocated:
 - Well established baseline, effective knowledge and control: early start (3 days) -> early stable beams (3 days)
 - Optics change accounted for ~1 week (as expected)
- Step-wise approach for **intensity ramp-up**:
 - Monitor behavior during >15h in stable beams
 - Validate progressively correct functionality of machine-protection system and operational tools
 - Bunch intensity ~1.55e¹¹ p/b

3/12 - 75 - 400 - 800 - 1200 - 1800 - 2400 - full machine*

Heat load

- Heat load (HL) deposited by the beams can become a **limitation** when not enough cryo capacity (presently well beyond the Design Report value)
- Gradual conditioning helps to increase the beam intensity
- **Degradation observed** when sectors are vented to air (LS) ۲
- Non-homogeneous distribution across the machine
 - Sector 78 is the highest sector in Run3

LHC Experiment RRB - 22.04.2024

P1

Geographical HL distribution

Heat load in Run3

- 2023: Kept under control thanks to hybrid filling scheme (8b4e and 36 bunch trains) e-cloud suppressed but penalization on number of bunches
- **2024**: Modified cryogenic configuration (capacity rebalanced between S78 and S81) allows to operate LHC without hybrid scheme at 1.6e¹¹ p/b:
 - Larger number of bunches
 - Better beam quality
- Dedicated scrubbing session with long trains (72b) allowed to inject for the first time 2676 bunches in each beam (at injection energy!)

LHC injectors performance

Year-by-year intensity goals of the rampup at SPS extraction

- 2021: 1.3e¹¹ p/b Recover Pre-LS2 beam parameters
- 2022: 1.8e¹¹ p/b Set base for LHC 2023 operation
- 2023: 2.1e¹¹ p/b Toward LIU targets (HL parameters)
- 2024: 2.3e¹¹ p/b LIU target for HL-LHC operation

LIU intensity and bunch length <u>at SPS extraction</u> achieved:

- 4x72 bunches at 2.3e¹¹ p/b with bunch length of 1.65 ns
- Transverse emittances did not yet satisfy LIU specification (optimization will be done in the next high intensity sessions)

Outline

- Main issues from 2023: status and impact
- 2024 beam commissioning status
- Outlook for rest of Run3

LHC schedule - changes

- Injectors YETS shifted by 5-weeks
 - 3-weeks reduction, more physics
- LHC YETS shifted by 4-weeks (Start date 28.10 -> 25.11)
 - 19 weeks length (beam-to-beam) maintained
 - Extended time used for proton physics
- 2025 run shortened <u>by 4 weeks</u> -> one Technical Stop removed
- NO additional technical stop for 2024 run

Activity	2024+2025 v1.0 [days]	2024+2025 v2.0 [days]	Diff [days]
Proton physics	269	274.5	+5.5
Ion physics & p-p ref. run (Oxygen included)	44.5	45	+0.5
Scheduled stops & recovery	28.5	22.5	-6

2024 LHC schedule

Activity	Duration [days]	Ratio [%]
Beam Commissioning & Intensity ramp-up	41	15.8
Scrubbing	3	1.2
25 ns physics (>1200 bunches)	147.5	56.9
Special physics runs (incl. setting-up)	2	0.8
Pb-Pb ions & p-p ref. setting-up	6	2.3
Pb-Pb ions physics & p-p ref. run	23	8.9
Technical stop	9	3.5
Technical stop recovery	2	0.8
Other scheduled stops	2.5	1.0
Machine Development	23	8.9
Total:	259	100%

	First Apr beams	Stable @ 6.8 TeV	Collis 1200	ions with bunches	May				Jun				
Wk	14	15	16	17	18	19	20	21	22	23	24	25	26
Мо	Easter 1	₩ _8	15	22	29	e	5 13	Whitsun 20	27	s	3 10	17	24
Tu		Interle	eaved				MD 1						
We		commis	sioning &		1st May						2 9 TS1		
Th		intensity	ramp up	v		Ascension	VdM				p 191		
Fr		Cryo reconfig.					program				liss G		
Sa		Scrubbing ~									spare		
Su		, our assoring											
	Jul				Aug				Sep				Oct
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	1	8	15	22	29	5	5 12	19	26	2	9	16	2:
Tu													
We								MD 3					
Th										Jeune G.			
Fr		ļ	L								.		
Sa		Į	ļ								_		MD 4
Su													
V C	IP visits ERN 70	End	25 ns run [08:00]		Nov			End (06	of run 6:00] Dec				
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	30	7	14	21	28	4	MD 6 11	18	* 25	2	2 9	16	23
Tu	*			TS2	p-p ref								
We					run								Xmas
Th			V	p-p ref	+		Ph-Ph Ion run			Ŷ	ETS		Annual Closure
Fr			MD5	setup	Cryo reconfig.								
Sa			NO 5		Pb Ion								

setting up

Su

Performance

2023 production rate reached ~0.8 fb⁻¹/day in stable periods (2 weeks only) with 1.6e¹¹ p/b and ~50% time in SB

[Generated at: 2024-04-18 16:18:17]

10

5

0

Delivered Luminosity 2023

Availability

- Availability is <u>THE key factor</u> for accelerator performance
- Accelerator Fault Tracking (AFT) systems allows for analysis and cataloguing of down time
- LHC availability factor was constant through Run2 and Run3 for small (<24h) faults
- "Long faults" have been <u>so far</u> dominant for Run 3

Essility	Overall availability [%]								
гасшту	2021	2022	2023	2024*					
LINAC4	97.3	96.8	98	93.2					
PSB	94.5	94.8	96.1	90.9					
PS	88.1	89.6	92	88.6					
SPS	73.4	74.1	86 (94.3 LHC)	85.1 (92.2 LHC)					
LHC		76.3	43.7**	75.2					

* Affected by Klystron replacement and extraction kicker repair in PSB

** Includes RF finger module exchange & Cold mass to insulation vacuum repair

Conclusions

- 2024 Run has started and <u>NO limitation</u> is identified
- Bunch intensity presently limited to 1.6e¹¹ p/b for risk mitigation
 - Until further understanding of heat deposition dynamics
 - Pushing bunch intensity in Run3 is important to unveil any potential limitations, before LS3
- Heat load should be kept under control in 2024
- YETS shift (4 weeks forward) will result in a net gain of about 6 days (dedicated to pp physics)

Thanks for your attention

SPARE

FASER/SND background

- FASER and SND background rates are ~doubled wrt 2023 (non-RP optics)
 - Implies more frequent emulsion exchanges (if available!)
- Background tests for FASER demonstrated little impact of collimation system on background, as increase is driven by TeV-scale muons, originating from IP
 - Agreement with FLUKA simulations which indicate an origin before TCL4
 - More simulations ongoing

Momentum distribution (signed by charge), r<100mm

Courtesy of B. Petersen

2024 LHC schedule

	Versio	า 2.0	Versio	Gains &	
Activity	Duratio n [days]	Ratio [%]	Duratio n [days]	Ratio [%]	Losses
Beam Commissioning & Intensity ramp-up	41	15.8	42	18.2	=
Scrubbing	3	1.2	3	1.3	=
25 ns physics (>1200 bunches)	147.5	56.9	124	53.7	+ 23.5
Special physics runs (incl. setting-up)	2	0.8	2	0.9	=
Pb-Pb ions & p-p ref. setting-up	6	2.3	6	2.6	=
Pb-Pb ions physics & p-p ref. run	23	8.9	22.5	9.7	+ 0.5
Technical stop	9	3.5	9	3.9	=
Technical stop recovery	2	0.8	2	0.9	=
Other scheduled stops	2.5	1.0	0.5	0.5	=
Machine Development blocks (incl. floating MDs)	23	8.9	20	8.7	+ 3
Total:	259	100 %	231	100 %	+28

2025 LHC schedule

	Versior	n 0.6	Versior	Gains &	
Activity	Duration [days]	Ratio [%]	Duration [days]	Ratio [%]	Losses
Beam Commissioning & Intensity ramp-up	36	16.1	37	14.7	=
Scrubbing	2	0.9	2	0.8	=
25 ns physics (>1200 bunches)	123	54.9	141	56	-18
Special physics runs (incl. setting-up)	2	0.9	2	0.8	=
Oxygen ion setting-up	4	1.8	4	1.6	=
Oxygen ion physics	4	1.8	4	1.6	=
Oxygen ion recovery	0.5	0.2	0.5	0.2	=
Pb-Pb ions & p-p ref. setting-up	6	2.7	6	2.4	=
Pb-Pb ions physics & p-p ref. run	18	8.0	18	7.1	=
Technical stop	8	3.6	13	5.2	- 5
Technical stop recovery	2	0.9	4	1.6	- 2
Other scheduled stops	1.5	0.7	0.5	0.2	+1
Machine Development blocks (incl. floating MDs)	17	7.6	20	7.9	- 3
Total:	224	100%	252	100	- 28

P. Chiggiato @ LMC #479

HL-LHC readiness

2024

2025

Cores?

Cryogenics

2026

Cores?

Warm-

2027

Cryogenics, power converters, SC links, machine

protection...

(De-)cabling

Deinstallation and installation

2028

Commissioning

Training Quench & Annual Maintenance 2029

- credible and the associated schedule margins adequate
- The potential delays are well covered

2023 HL-LHC Cost and Schedule review, CMAC report: "Although schedule risks remain in several areas, the CMAC is convinced that the project will be ready for implementation in LS3."

HL LHC

HL-LHC

undergrour

d galleries

HL-LHC in

the LHC

2022

2023

Electrical distribution & power for HL

Cooling and ventilation systems for HL facilities

RUN 3

Heat load expectations Beam screen cryo capacities during HL-LHC era

- LHC cryoplants are supplying many devices in parallel at different temperatures
 - > Thermal shields between 50 K and 75 K
 - > Main superconducting magnets at 1.9 K (ARC dipoles/quadrupoles)
 - > Stand Alone superconducting magnets at 4.5 K (D2, D3, Q4, Q5, Q6)
 - RF cavities at 4.5 K
 - > DFB at 4.5 K with their current leads and superconducting links
 - > Inner Triplet at 1.9 K around experiments (dynamic heat loads, depending on luminosity)
 - > Beam Screens (BS) between 4.5 K and 20 K (dynamic heat loads, depending on beams)

All LHC cryoplants are slightly different and have different capacities & loads (RF, SAM, DFB, triplets, etc.)

Expected changes in Run 4++	Helium massflow	Q @ 1.9 K [per sector]	BS <u>Capa</u> 4.5 K - 20 K [per ARC]	BS Capa 4.5 K - 20 K [per half-cell]	Concerned sectors
Removal of IT at P1 & P5 in LS3 (Run4)	-12 g/s	-280 W	+1.3 kW	+25 W/hc	S12, S81, S45, S56
Increase of Lumi at P8 with LHCb++ after LS4 ? (Run5)	+11 g/s	+260 W	-1.2 kW	-23 W/hc	S78, S81

➔ The available beam screen cryogenic capacities will change from Run 4

Beam screen treatment

Risks:

- Degradation of un-treated half-cells during future LS
 - Extremely difficult to quantity and impossible to localize
- Higher than expecter heat loads of treated half-cells
- Low(er) number of treated half-cells in LS3

Possible mitigations?

- Treat larger number of half-cells (more margins)
- Produce less e-cloud
 - Filling scheme (36b/48b (2022), hybrid (2023))
 - Continue the beam screen treatment in future LS

OBJECTIVES

- Remove CuO and/or increase surface carbon concentration on selected BS
- Beam Screen (BS) surface passivation (robustness against re-oxidation)

A scenario treating 100 half-cells looks realistic

Heat load expectations

