

High Field Magnets

ISAAC, a first common coil with RMC coils: features and plans

J. García-Matos, C. Martins, <u>F. Toral</u>, CIEMAT J. C. Pérez, CERN

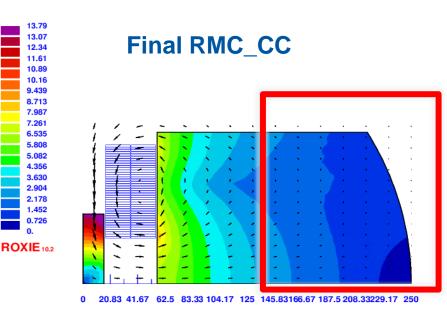
March 21st 2024

HFM Forum Meeting

Table of contents

- Magnetic design
- Mechanical design: reminder
- Mechanical design: update
- Schedule
- Conclusions

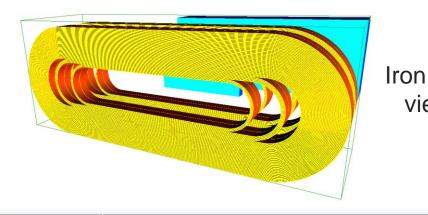
ISAAC magnetic design: goals & constraints


- Main goal: learn for the 14 T model with existing coils, mostly on mechanics
 - Existing RMC coils made at CERN with MQXF strand are selected. These coils have reached short sample conditions during their test campaign in block configuration:
 H. Bajas, 'RMC_QXF: Test Results Report', presented at the RMC-QXF-PIT Test Results, CERN SM18, Prévessin-Moëns, France, Jun. 20, 2018. [Online]. Available: https://indico.cern.ch/event/738646/
 - Provide ≈14 T in the aperture (100% load)
 - Decrease vertical Lorentz force F_y to achieve low vertical preload (free horizontal movement when coils are energized, without friction)
 - Mechanics & assembly as simple as possible
- ISAAC: Investigating Superconducting Assembly to Address Common coil mechanics

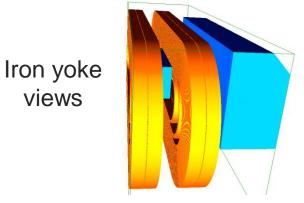
ISAAC magnetic design to provide 14T

- Yoke very close to the coil (only 1.2 mm distance).
- Intra-beam distance tuned to decrease a2 multipole.
- Efficiency in common coil configuration is low due to the narrow pole window.
- Yoke geometry to decrease vertical repulsive forces on cables. The outer diameter could be reduced without significant impact on the aperture field
- Protection is possible using a dump resistor.

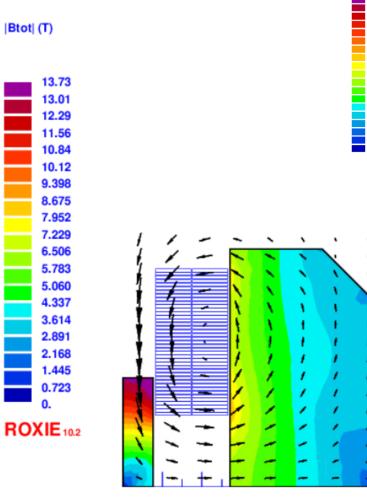
Design ID	ISAAC	Block	Eq. CC	Eq. CC (+100 mm intrabeam	Units
Aperture	34	74	74	74	mm
Intra-beam dist.	150	-	152	252*	mm
I_nom	19083	14486	21353	20460	Α
Yoke outer radius	250	246	246	246	mm
В	14	14	11.3	11.96	Т
Peak field	14.8	16.16	14.27	14.51	Т
Peak Field/B	1.0571	1.154	1.263	1.213	-
Load	99.99	99.99	100.2	100.36	%
Engineering J	537	408	601	576	A/mm ²
Copper J	1509	1145	1688	1618	A/mm ²
Superconductor J	1850	1404	2070	1984	A/mm ²
Stored energy	1038	1752	1701	1733	kJ/m
Static Self Induct.	5.7	16.7	7.46	8.28	mH/m
L*I	109	242	159	169	HA/m
Stray field (20 mm)	0.44	1.188	0.65	1.56	Т
Sum Fx Q1	6.636	5.1	5.79	6.53	MN/m
Sum Fy Q1	0.474	-4.3	3.02	0.73	MN/m



ISAAC 3D


All models available:

	Without iron	SS yoke only	Complete Yoke
Integrated field [Tm]	12.72	13.81	13.9
Magnetic length [m]	0.554	0.536	0.55


- Magnetic length: 0.55 m
 - Straight section = 0.3 m
 - Physical length = 0.65 m aprox.
- 3D peak fields are lower than 2D ones
- Energy and longitudinal forces match

HFM High Field Magnets

March 21st 2024

Rel. field errors (units 10⁻⁴)

0 20.83 41.67 62.5 83.33 104.17 125 14

|Btot| (T)

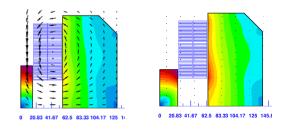
13.73 13.01 12.29 11.56 10.84 10.12 9.398 8.675 7.952 7.229

6.506

5.783

5.060

4.337 3.614


2.891 2.168

1.445 0.723 0.

ISAAC 2D: Aperture comparison

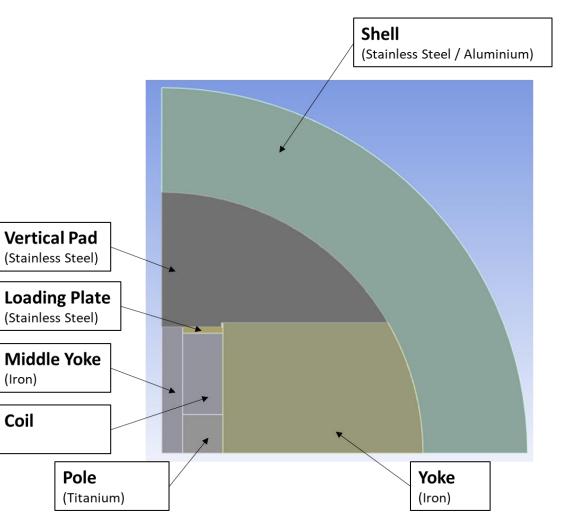
- Both apertures are feasible: 34 and 50 mm
- Worse peak to bore **field ratio** in 50 mm aperture
- More stored energy in 50 mm aperture, but magnet protection is feasible

Parameter	Value	Units
Strand type	Nb ₃ Sn	
Strand diameter	0.85	mm
Strand technology	PIT	
Number of Nb ₃ Sn filaments/Sub-elements	192	
Number of turns per layer	41	
Cu/SC	1.2	
RRR	100	
Non-Cu J _c (15 T, 4.2 K), no self-field corr.	1280	A/mm ²
Number of strands in cable	40 (2x20)	
Cable bare width (before/after HT)	18.15/18.5	mm
Cable bare thick. (before/after HT)	1.525/1.59	mm
Insulated cable width (after HT)	18.8	mm
Insulated cable thick. (after HT)	1.89	mm
Cable width expansion during HT	1.93	%
Cable mid-thick. expansion during HT	4.26	%
Pitch length	109	mm
Insulation type	S2-Glass Braiding	
Insulation thickness per side at 5 MPa	0.15	mm
Impregnation resin	CTD-101K	
Distance between layers	0.5	mm
dB/dt	~0.01	T/s

ISAAC: MAGNETIC DESIGN

Parameter	Conf. 1	Conf. 2	Units
Aperture	34	50	mm
Intra-beam distance	149.6	149.6	mm
Straight section length	0.3	0.3	m
Turns per coil	82	82	-
Copper area (1 st quadrant)	1015	1015	mm^2
Superconductor area (1st quadrant)	846	846	mm^2
Nominal current (I)	19340	20728	A
Magnetic length	0.55	0.55	m
Aperture field	13.93	12.68	Т
Peak Field	14.73	14.37	Т
Peak/aperture field ratio	1.0577	1.1338	-
Load-line	100	100	%
Stored energy	1039	1350	kJ/m
Static self-inductance (L)	5.56	6.28	mH/m
L·I	107	130	HA/m
F _x (Q1)	6.38	5.86	MN/m
F _y (Q1)	0.42	0.81	MN/m
R _{dump}	45	45	mΩ
Detection delay	20	20	ms
Maximum voltage	914	979	V
MIITS	22	28	MAAS
Hot-spot temperature	209	292	К
Cu current density (J_{Cu})	1562	1674	A/mm ²
Superconductor current density (J_{5C})	1875	2009	A/mm ²
Engineering current density (J_{eng})	544	583	A/mm ²
Energy density	89.2	115.8	J/cm ³

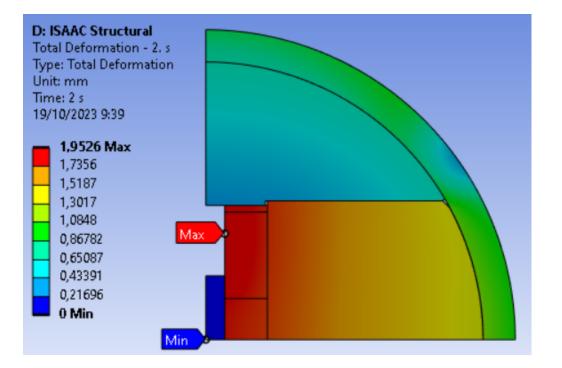
Table of contents


- Magnetic design
- Mechanical design: reminder
- Mechanical design: update
- Schedule
- Conclusions

Mechanical design: initial layout

Main features:

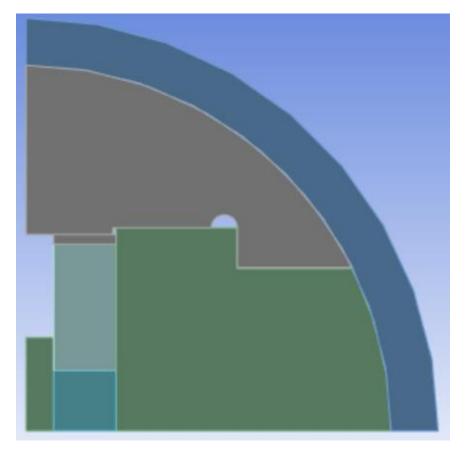
- Parts in contact (without prestress) at room temperature
- Stainless steel vertical pad
- Cooling (from 295 K to 1.9 K)
- Electromagnetic forces


Mechanical design: goals

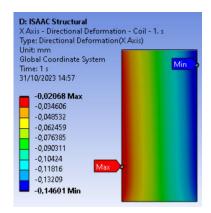
- Aluminium shell similar to SMC CERN block configuration:
 - Outer yoke radius: 250 mm
 - Shell thickness: 29 mm

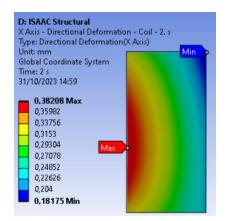
Goal: **Displacement of the coil below 1mm** in order to:

- Reduce the possibility of sudden coil movements
- Reduce the impact on field quality


First simulation shows a horizontal displacement of the coil close to **2 mm**!!

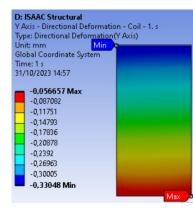
Mechanical design: stiff support structure


- Let's explore the use of yoke as **support structure**
- Upper part is made of stainless steel: it may help to contain the large Lorentz horizontal force
- Aluminium shell also contributes to hold the forces
- The coil would lose contact with this part during cooling down: it could move horizontally without friction
- Assembly with bladder and keys is not included in this model
- Slight preload just to keep contact between parts

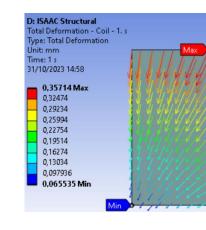


Mechanical design: coil displacement

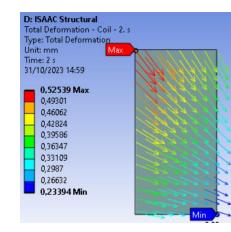
Horizontal coil displacement below 0.5 mm

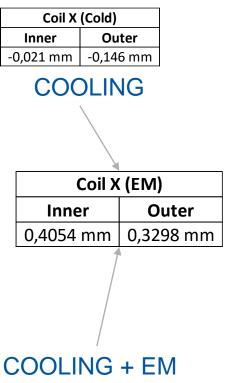


X displacement


HFM

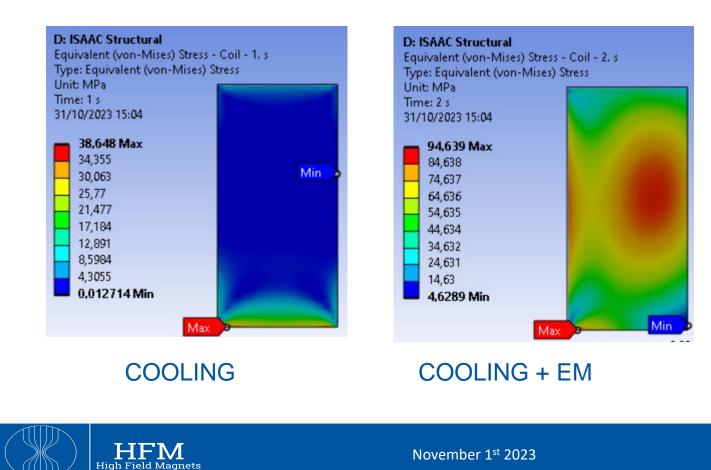
High Field Magnets

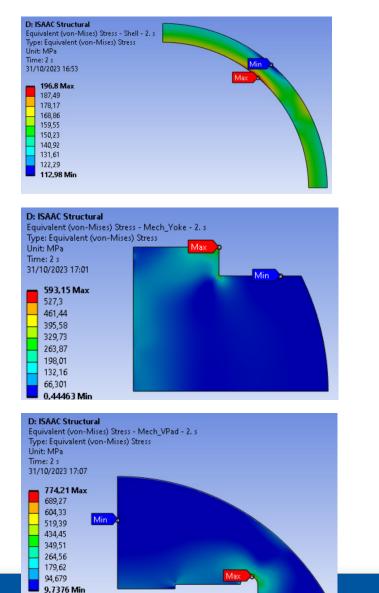



Y displacement

Typ	e: Directional Deformation	(Y Axis)
	it: mm Min	
Glo	bal Coordinate System	
Tim	ne: 2 s	
31/	10/2023 15:00	
	0.000000 M	
	-0,038966 Max	
	-0,081255	
-	-0,12354	
	-0,16583	
	-0,20812	
	-0,25041	
	-0.2927	
	-0,33499	
	-0,37728	
	-0.41957 Min	

Total displacement


Coil X (Cold+EM)				
Inner	Outer			
0,3848 mm	0,1838 mm			



Mechanical design: stress distribution

Coil stress below 95 MPa!!

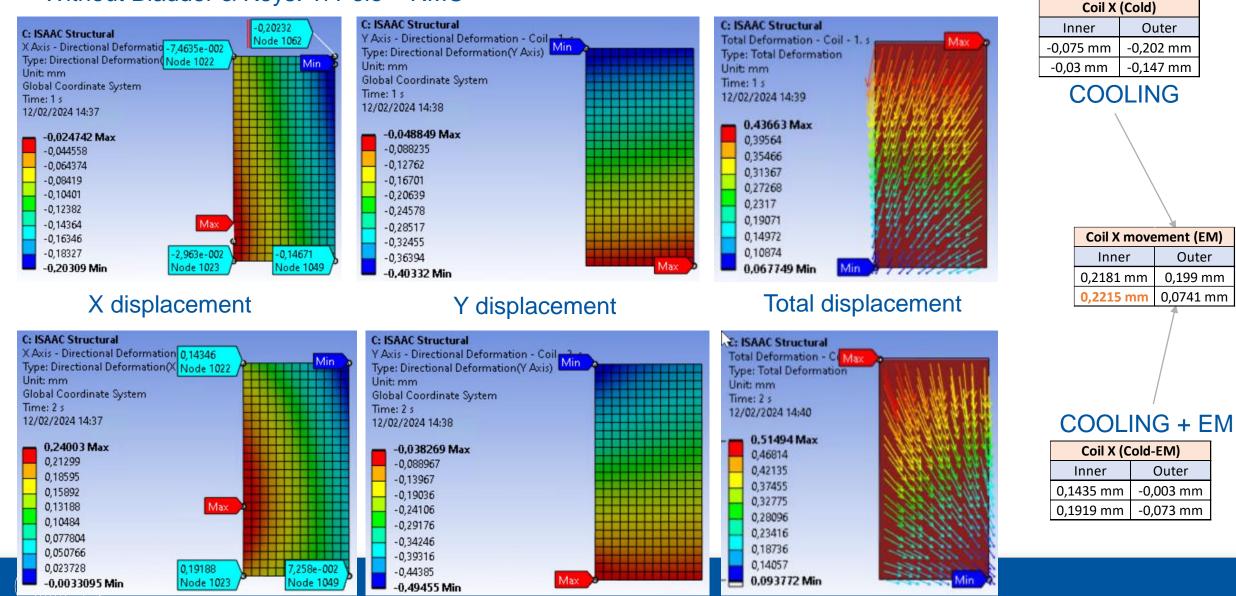
- No significant problems for the structural parts.
- Detailed design is ongoing.


Table of contents

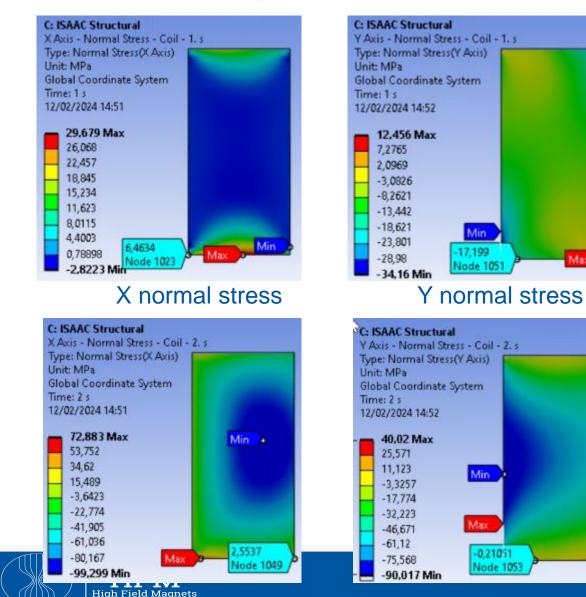
- Magnetic design
- Mechanical design: reminder
- Mechanical design: update
- Schedule
- Conclusions

First design iteration: stiffer support structure

- The support structure is much more stiffer
- No bladder and keys included in this model



Material properties: <u>A Review of the Mechanical Properties of Materials Used in</u> <u>Nb3Sn Magnets for Particle Accelerators</u> (DOI 10.1109/TASC.2023.3248544)


Displacements @ Coil. COOLING + EM

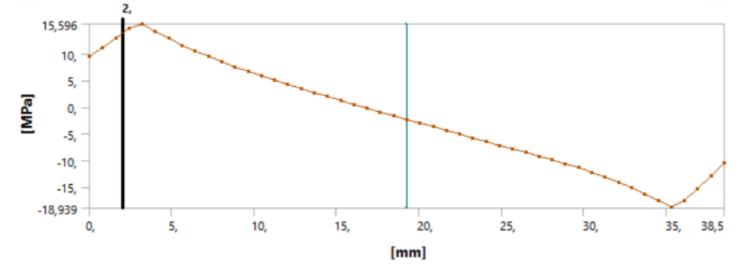
Without Bladder & Keys. Ti Pole – RMC

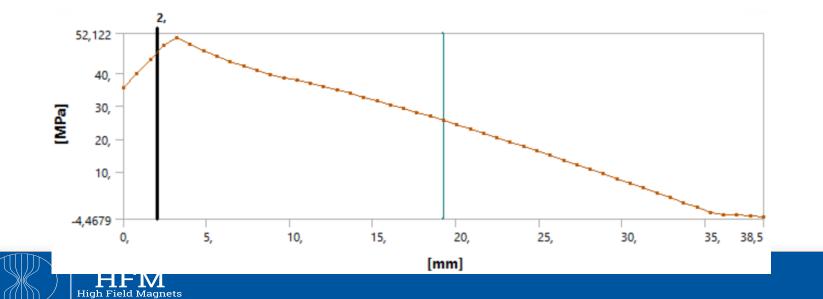
Stress @ Coil. COOLING + EM

Without Bladder & Keys. Ti Pole – RMC

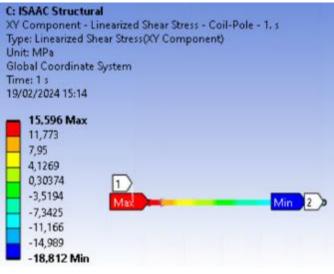
2.0851 Min

6,146

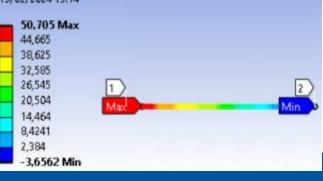

Node 1049

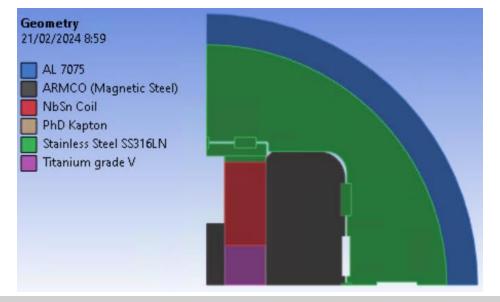

COOLING

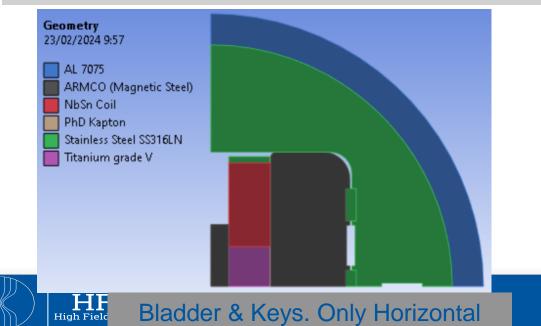
COOLING + EM

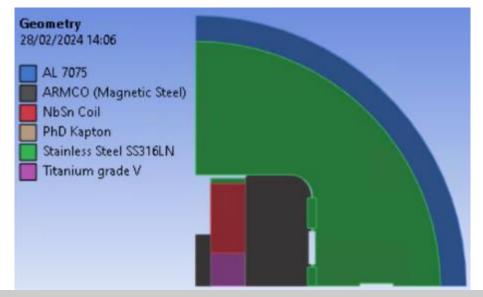

Shear stress @ Coil

Without Bladder & Keys. Ti Pole – RMC

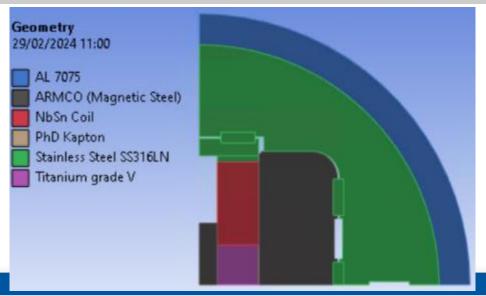

COOLING


COOLING + EM

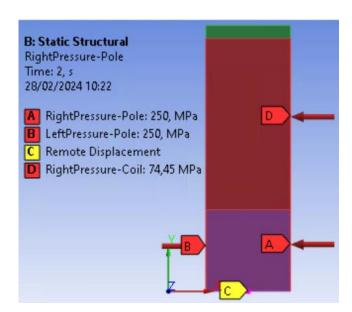

Time: 2 s 19/02/2024 15:14



A number of configurations were unsuccessfully studied to reduce the shear stress...



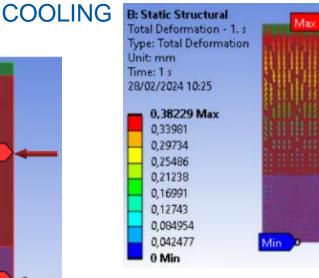
Bladder & Keys. Horizontal and Vertical



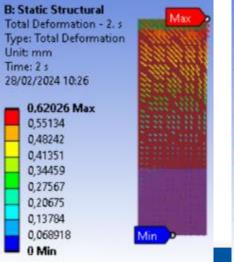
Bladder & Keys. Only Horizontal. + 50mm Shell Inner R

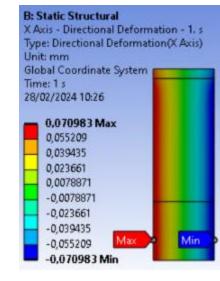
Bladder & Keys. Horizontal and Vertical (v2)

Only the coil is modeled: boundary conditions to minimize shear stress

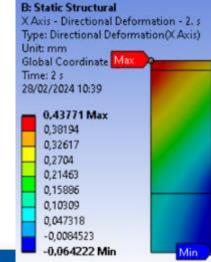


	Different	Different Pressures Pole & Coil (X direction): B						
	Cool+EM (2s)	Ansys label						
Pole (Left)	0 MPa	250 MPa	250 MPa	В				
Pole (Right)	0 MPa	-250 MPa	-250 MPa	А				
Coil (Right)	0 MPa	0 MPa	-74,45 MPa	D				
LoadPlate (Right)	0 MPa	0 MPa	0 MPa	E				

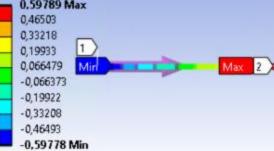

HFM High Field Magnets


	Time [s]	▼ Total - Force Reaction - Remote Displacement - 1. s (X) [N]
1	1,	8,2908e-007
1	2,	-3,143e+005

COOLING + EM



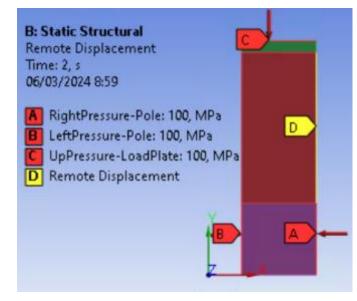
Total displacement



X displacement

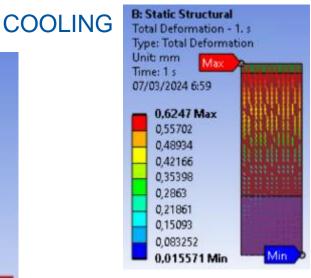
B: Static Structural

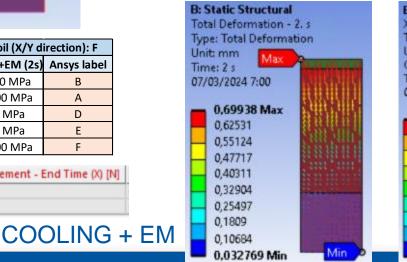
XY Component - Linearized Shear Stress - Coil-Pole - 1. s Type: Linearized Shear Stress(XY Component) Unit: MPa Global Coordinate System Time: 1 s 28/02/2024 10:40 0.59789 Max

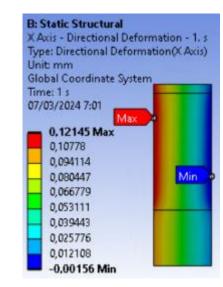


Shear stress

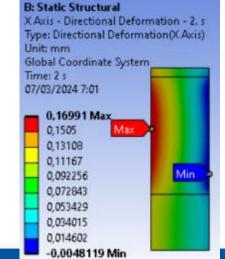
B: Static Structural XY Component - Linearized Shear Stress - Coil-Pole - 2. s Type: Linearized Shear Stress(XY Component) Unit: MPa Global Coordinate System Time: 2 s 28/02/2024 10:40


Shear stress cannot be reduced with moderate preload

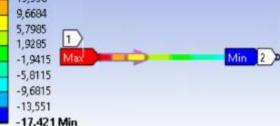

	Different P	Different Pressures Pole & Coil (X/Y direction): F						
	Start (Os)	Cooling (1s)	Cool+EM (2s)	Ansys label				
Pole (Left)	0 MPa	100 MPa	100 MPa	В				
Pole (Right)	0 MPa	-100 MPa	-100 MPa	А				
Coil (Right)	0 MPa	0 MPa	0 MPa	D				
LoadPlate (Right)	0 MPa	0 MPa	0 MPa	E				
LoadPlate (Up)	0 MPa	-100 MPa	-100 MPa	F				


	Time [s]	All - Force Reaction - Remote Displacement - End Time (X) [N]
1	1,	-1,7507e-003
2		-6,1021e+006

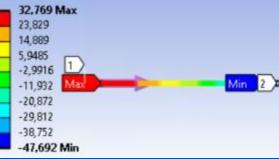
HFM High Field Magnets



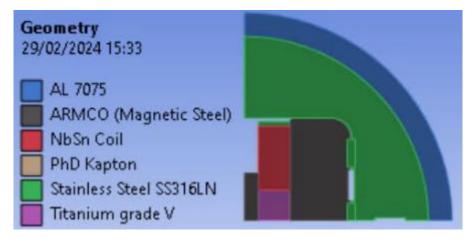
Total displacement



X displacement

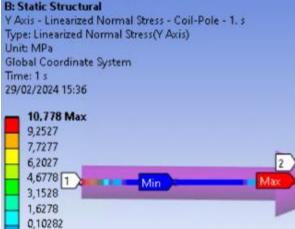

B: Static Structural

XY Component - Linearized Shear Stress - Coil-Pole - 1. s Type: Linearized Shear Stress(XY Component) Unit: MPa Global Coordinate System Time: 1 s 07/03/2024 7:02 17,408 Max 13,538 9,6684

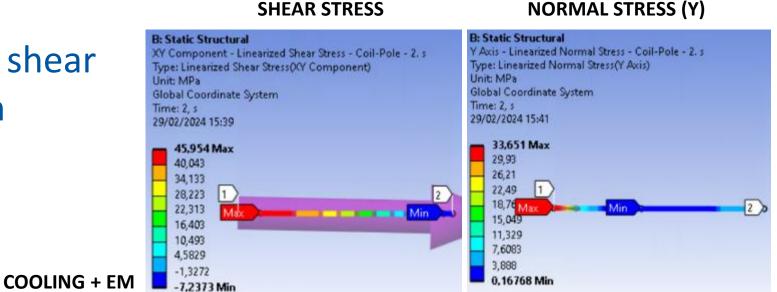


Shear stress

B: Static Structural XY Component - Linearized Shear Stress - Coil-Pole - 2. s Type: Linearized Shear Stress(XY Component) Unit: MPa Global Coordinate System Time: 2 s 07/03/2024 7:02



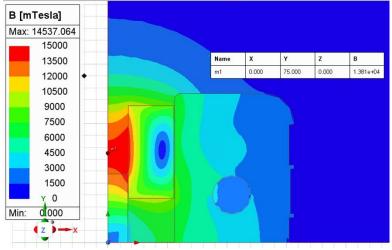
ISAAC Mechanical Design: conclusion


Upper Key: 0,12mm gap Lower Key: contact

B: Static Structural XY Component - Linearized Shear Stress - Coil-Pole - 1. s Type: Linearized Shear Stress(XY Component) Unit: MPa Global Coordinate System Time: 1 s 29/02/2024 15:39 18,528 Max 14,415 10,301 6,1871 1 2,0734 -2,0403 -6,1541 -10,268-14.382 COOLING -18,495 Min

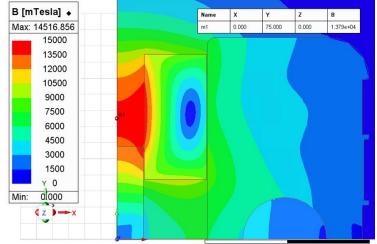
SHEAR STRESS

- No way to reduce the shear stress at the pole turn
- Only slight horizontal preload at assembly



-1,4222

-2.9471 Min


Mechanical design: next steps

- **3D modeling** is ongoing
- Axial Lorentz forces will be kept by aluminium rods: they should be placed close to the coils, iron must be enlarged
- First priority is to freeze the shell diameter
- Main concern is the shear stress

Min: oloc

30 mm rods

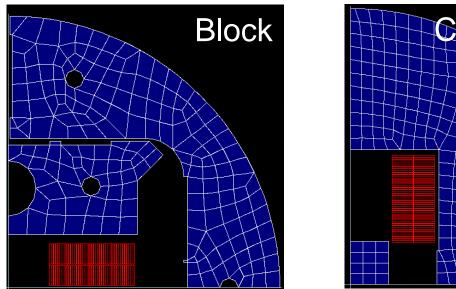
50 mm rod

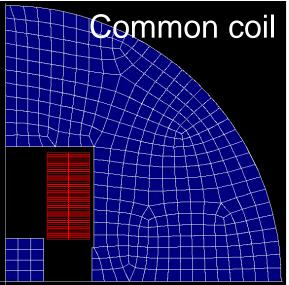
March 21st 2024

HFM Forum Meeting

Schedule

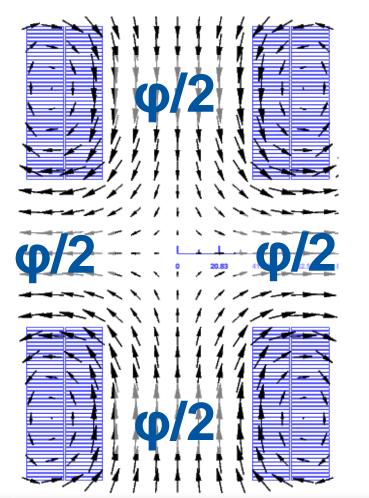
- Mechanical calculations: mid-May
- Engineering design: June
- Fabrication: September (shell is the bottle neck)
- Assembly: October
- Test: November


Conclusions

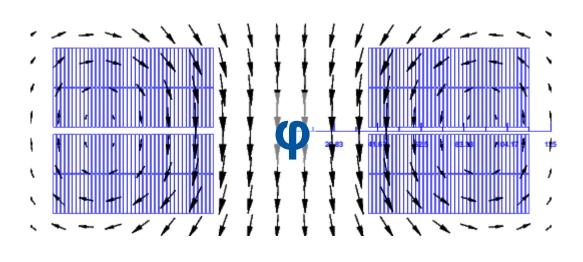

- The first stage of CIEMAT HFM program is the study of common coil mechanics using existing RMC coils
- The strategy is to let the coils move horizontally, due to the low impact on field quality: low coil stresses at any load condition
- Electromagnetic design has been made for two apertures: 34 and 50 mm
- A significant shear stress is induced at the pole turn due to the **glued titanium pole**
- No way has been found to reduce the **shear stress**. A balanced solution is found with slight horizontal preload at assembly, aluminium shell and stiff support structure.
- **3D mechanical design** is ongoing to study the behaviour of axial forces.
- The **bottleneck** for fabrication is the aluminium shell.
- In parallel, the electromagnetic design of a 14 T demonstrator magnet with 50 mm aperture is being done, based on existing strands

Block vs. common coil

- Same aperture, 100% load line, same yoke outer radius
- Same energy but half inductance in CC: easier to protect.
- Slightly larger horizontal forces but large repulsive vertical forces.
- More current required in CC: less field but two apertures.



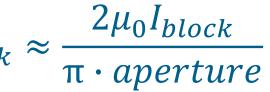
Design ID	Block	CC	Units
Aperture	74	74	mm
Intra-beam dist.	-	152	mm
l_nom	14486	21294	A
Yoke outer radius	246	246	mm
В	14	11.28	Т
Peak field	16.16	14.24	Т
Peak Field/B ratio	1.154	1.26	-
Stored energy	1752	1692	kJ/m
Static Self Induct.	16.7	7.46	mH/m
L*I	242	159	HA/m
Stray field (20 mm)	1.188	0.64	Т
Sum Fx Q1	5.1	5.77	MN/m
Sum Fy Q1	-4.3	3	MN/m


Block vs. common coil

 Using the same coils, current and aperture, common coil field is about half the block coil field

HFM

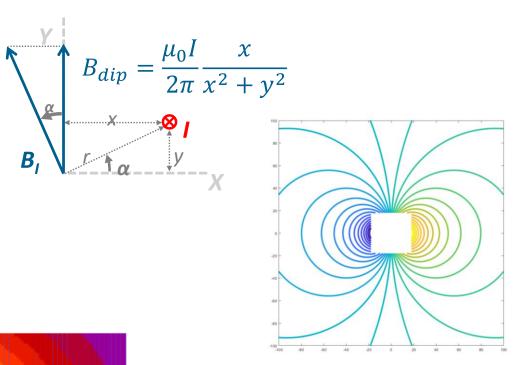
High Field Magnets

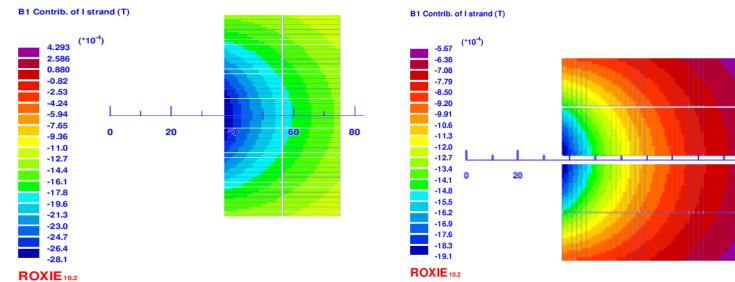


For $I_{CC} = I_{block}$

$$B_{CC} \approx \frac{B_{block}}{2}$$

$$_{CC} \approx \frac{\mu_0 I_{CC}}{\pi \cdot aperture}$$


$$B_{block} \approx \frac{2}{\pi}$$



B

Block vs. common coil

- Isolines for the dipole field contribution of a current line depending on its location
- In this particular case, the far cables of the block configuration are not efficient

120

Magnetic design: field quality vs coil position

- ISAAC magnet aperture: 34 mm
- A horizontal displacement of 0.5 mm:
 - decreases field about 1%
 - multipoles variation below 0.5 units unless a2 (1.5 units)

mm	Т	units	%							
Displ. X	Aperture field	b3	b5	b7	b9	a2	a4	а6	a8	% B
0	13.99	297.1	0.7	2.2	-0.5	3.0	-25.7	-1.5	1.4	0
0.5	13.86	297.0	1.1	2.2	-0.5	1.5	-25.9	-1.6	1.5	-0.97
1	13.73	296.8	1.4	2.2	-0.5	-0.0	-26.2	-1.6	1.5	-1.92
1.5	13.60	296.5	1.8	2.2	-0.5	-1.5	-26.5	-1.6	1.5	-2.87

