Proton-nucleus collisions at the LHC: The machine point-of-view

R. Bruce, with material and essential inputs from J. Jowett, M. Jebramcik

Outline

- Introduction: LHC ion program and p-nucleus collisions
- Machine challenges with p-Pb operation
- Past results of p-Pb at LHC
- Future plans for p-nucleus and expected performance
 - p-O
 - p-Pb
- Conclusions

LHC heavy-ion program

- LHC typically operates 1 month per year with heavy ions
 - So far Pb-Pb (5 runs), p-Pb (2 runs)
 - Short pilot runs in other configurations

• Run 3

- Pb-Pb run in 2023 first operation with all HL-LHC ion upgrades implemented
- p-Pb presently not scheduled in Run 3
- O-O and p-O pilot run in 2025

Future of LHC heavy-ion program

• Run 4

- Yearly Pb-Pb and/or p-Pb operation
- Sharing between Pb-Pb and p-Pb not yet decided, assume now one p-Pb run

• Beyond Run 4

- No further ion runs formally approved
- Advanced studies of continued heavy-ion program, potentially using other species (ALICE3 etc)

4

R. Bruce, 2024.07.04

History of p-nucleus collisions at LHC

- Only Pb-Pb foreseen in LHC design
- Interest in p-Pb grew in mid-2000's

Outline

- Introduction: LHC ion program and p-nucleus collisions
- Machine challenges with p-Pb operation
- Past results of p-Pb at LHC
- Future plans for p-nucleus and expected performance
 - p-O
 - p-Pb
- Conclusions

Machine challenges for p-Pb

- Many of the same challenges with Pb beam as for the Pb-Pb program
 - Collimation and beam losses
 - Achieving design beam parameters injectors, long LHC injection plateau
- Challenges specific to unequal species
 - Filling schemes
 - p and Pb beams not produced in the same way in injectors. Need to take care to maximize overlap and the number of collisions at all experiments
 - o Beam instrumentation
 - Potentially need different settings in the two beams
 - Collisional losses
 - Asymmetric pattern of losses, need to keep absolute losses below BLM thresholds and quench limit
 - Unequal revolution frequencies and resulting effects
 - See next slide
 - o Beam-beam effects
 - Moving long-range encounters studied extensively in <u>thesis</u> by Marc Jebramcik

Revolution frequencies

Revolution frequencies

- Same fixed magnetic field in the two apertures (unlike RHIC), but RF frequencies can be different
- Unequal charge-to-mass ratio in the two beams
- => the two beams have different γ, speed, and revolution frequency
- If nothing is done, collision points and long-range beam-beam encounters that move over time
 - unacceptable for experiments; could drive instabilities
 - Studied extensively in <u>thesis</u> by Marc Jebramcik presently not limiting LHC
- Solution: change path length to compensate for difference in speed
 - Done by putting both beams slightly offmomentum
 - o Can equalize revolution frequencies

$$B\rho = \frac{p}{Z e} = \frac{m}{Z e} \gamma \beta c$$

$$\frac{\Delta \tau}{\tau} = -\left(\frac{1}{\gamma^2} - \alpha_c\right) \frac{\mathrm{d}p}{p}$$

LHC p-Pb configuration

• Off-momentum orbits feasible only above ~2.7 TeV

At lower energy, orbits too close to the aperture

• LHC p-Pb cycle

- Injection and energy ramp done with same magnetic rigidity but different revolution frequencies
- At top energy, lock equal frequencies, bringing beams offmomentum, shift bunch encounters to the collision points ("cogging")
- Collide with beams slightly offmomentum
 - At 6.5 TeV in 2016, needed δ=±9×10⁻⁵ - easier than 4 TeV in Run 1

Outline

- Introduction: LHC ion program and p-nucleus collisions
- Machine challenges with p-Pb operation
- Past results of p-Pb at LHC
- Future plans for p-nucleus and expected performance
 - p-0
 - p-Pb
 - Conclusions

p-Pb operation in Run 1

• 2012: Pilot run in $\sqrt{s} = 5.02$ TeV

- 4 Z TeV beam energy
- One ~9h fill, low intensity (8 collisions per experiment), keeping injection optics (β*=10-11m), L≈10²⁶ cm⁻¹ s⁻¹
- 2013: Physics run at $\sqrt{s} = 5.02$ TeV
 - 4 Z TeV beam energy
 - − 25 days dedicated to physics, ~300 collisions per experiment, β *=0.8 m, L≈10²⁹ cm⁻¹ s⁻¹
 - Did both p-Pb and Pb-p

Intensity and luminosity in 2013 p-Pb run

2016 p-Pb run

- 2016: physics run at $\sqrt{s} = 5.02$ TeV and $\sqrt{s} = 8.16$ TeV
 - Conflicting requirements from experiments
 → run split in two parts at different energies
 heavy commissioning
 - 23 days dedicated to physics, up to ~400 collisions per experiment, β*≥0.6 m, L≤8.9×10²⁹ cm⁻¹ s⁻¹

• $\sqrt{s} = 5.02 \,\mathrm{TeV}$

- Requested by ALICE
- 1 week with very long fills with levelled luminosity

• $\sqrt{s} = 8.16 \,\mathrm{TeV}$

- requested by ATLAS/CMS/LHCb
- p-Pb and Pb-p
- Record-high luminosity
- Had to limit luminosity with levelling due to collisional beam losses

$\sqrt{s} = 5.02 \text{ TeV} (4 \text{ Z TeV})$

the second se	
β^* in IP1/5, 2, 8	$(11, 2, 10) \mathrm{m}$
No. of p, Pb bunches	702, 548
Protons/bunch	2.2×10^{10}
Pb/bunch	1.8×10^{8}
Collisions in IP1/5, 2, 8	81, 389, 54
$\varepsilon_{n(x,y)}$ (p/Pb)	$(1.4 \pm 0.2, 1.6 \pm 0.2) \mu\text{m}$
Luminosity at IP2	$1 \times 10^{28} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
Stable beams duration	14.9 h

$\sqrt{s} = 8.16 \text{ TeV} (6.5 \text{ Z TeV})$

β^* in IP1/5, 2, 8	(0.6, 2, 1.5) m
No. of p, Pb bunches	684, 540
Protons/bunch	2.8×10^{10}
Pb/bunch	2.1×10^{8}
Collisions in IP1/5, 2, 8	405, 351, 251
$\varepsilon_{n(x,y)}$ (p/Pb)	$(1.3 \pm 0.2, 1.6 \pm 0.4) \mu\text{m}$
Luminosity at IP1/5	$8.9 \times 10^{29} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
Stable beams duration	2.5 h

Summary of achieved performance

• Integrated luminosity so far

- 75 nb⁻¹ in ALICE
- ~220 nb⁻¹ in ATLAS/CMS
- 36 nb⁻¹ in LHCb

		Run 1	Run 2
Year		'13 [4]	'16 [5]
Beam energy E_b	$Z{ m TeV}$	4	4, 6.5
Collision energy $\sqrt{s_{\rm NN}}$	TeV	5.02	5.02, 8.16
Run duration	weeks	3	1, 2
Bunch spacing	ns	200/225	<u>100</u>
Number of bunches n_b	1	358	540
Pb bunch intensity N_b	10^{8}	<u>1.2</u>	2.1
Normalised emittance ϵ_n	$\mu { m m}$	2	1.5
Minimum β^* at the IP	m	0.8	10, 0.6
Peak luminosity \mathcal{L}	$10^{29} \frac{Hz}{cm^2}$	1.16	8.9
IP1/5 int. luminosity $\int \mathcal{L}$	$\rm nb^{-1}$	32	190

Outline

- Introduction: LHC ion program and p-nucleus collisions
- Machine challenges with p-Pb operation
- Past results of p-Pb at LHC
- Future plans for p-nucleus and expected performance
 p-O
 p-Pb
 - Conclusions

Plans for future p-nucleus operation

• Run 3

- No p-Pb scheduled
- Low-intensity pilot run with oxygen in 2025 (O-O and p-O)

• Run 4

- Expect ~1 month of heavy-ion operation per year
- Detailed sharing between Pb-Pb and p-Pb not decided, presently assuming one p-Pb run

2025 oxygen pilot run

• Target: about one week, low luminosity

- Including both O-O and p-O
- Use pilot beams with single injections (staying below 3×10¹¹ charges per beam) reduced commissioning
- Most efficient: re-use Pb-Pb machine cycle
 - $\beta^*=0.5m$ at IP1/2/5, but flatten crossing angles

• Wish list from experiments:

- O-O: 0.5/nb for all experiments
- p-O: 2/nb for all experiments, LHCf would like ~1.5/nb
- LHCf requests low pileup of 0.02 in p-0
- ALICE wants low pileup of 0.1-0.2

Beam parameters

- Not easy to estimate never sent O beams to LHC before
- Note: successful test of O beam in LEIR in 2023 gives good hope
- For p-O: pileup constraint from LHCf ightarrow
 - Split beam in many bunches at lower intensity
 - Assuming 36 bunches of 9×10⁸ O ions or 7×10⁹ protons

Estimated performance with oxygen

• Simulation of p-O fill show

- ALICE, CMS: Could reach targets in in one long fill of about 14 h
- LHCf/ATLAS: can level for >40h, need total stable-beam time of ~36h
- LHCb: would need several fills, e.g. 3 fills of 12-15h in stable beams + turnaround
- Could p-O targets in about 2.5 days (with optimistic ~100% LHC availability)
- Large uncertainty applies!
- Including commissioning time, could need 6-8 days
 - Oxygen run seems a priori feasible and mainly compatible with targets, but will certainly also be challenging
 - Needed time strongly depends on machine availability
- Some work still remains
 - optimize machine configuration and filling schemes
 - If available, use MD optics?
 - study transmutation effect

Considerations for p-Pb in Run 4

• Machine configuration

- As for Pb-Pb: $\beta^*=0.5$ m at IP1/2/5, $\beta^*=1.5$ m at IP8
 - Improvements under study
- Conservatively using $\sqrt{s} = 8.54 \text{ TeV}$ (6.8 Z TeV)
 - Should lower energy be considered?
 - In Run 2, lower-than-max energy chosen for Pb-Pb to have same \sqrt{s} as in 2013 p-Pb
- Level ALICE at 5×10²⁹ cm⁻¹ s⁻¹
- Assume collisional beam losses do not limit luminosity

Considerations for commissioning

- Beam and spectrometer reversal needs commissioning time → less time for physics
 - Are both p-Pb and Pb-p needed?
 - ALICE spectrometer reversal(s) needed?
- Commissioning risks being less efficient if something hasn't been done for a long time
 - Changes to software
 - Are the experts still around?
 - Important to "exercise" good opportunity in 2025 p-O run
- Can crystal collimation be used on the proton beam? Otherwise, extra commissioning overhead

• Pb beam

- Use slip-stacked Pb beam as in 2023 Pb-Pb with 50 ns bunch spacing
- Hope to improve performance w.r.t. 2023 and reach HL-LHC target (1.8x10⁸ Pb/bunch, ϵ =1.65 µm)
- Conservatively, compare performance with 2023 achieved parameters (1.5x10^8 Pb/bunch, $\epsilon{=}2~\mu{m}$)

Proton beam

- Baseline: 50 ns and low intensity ($3x10^{10}$ p/bunch, ϵ =2.5 µm)
- Production scheme in injectors is different for p and Pb → non-trivial to construct a 50 ns proton beam that overlaps 50 ns Pb beam
- Proton schemes based on 6*n bunches/batch, 200 ns gap between batches
- Two proton batches of 30 bunches almost fit a slip-stacked Pb train
- Direct overlap shows collisions at IP1/5 but we need to have many collisions at all IPs

LHC filling schemes for p-Pb

• Range of LHC filling schemes produced, using 50 ns or 25 ns proton beams

• 50 ns proton scheme

- Assume 5 injections in PS, triple-split at injection (\rightarrow 15b), double-split at PS flat top (\rightarrow 30b)
- Taking 2×30 bunches from PS to SPS
- Brute-force optimization to maximize number of collisions

• 25 ns proton scheme – feasibility for p-Pb remains to be proven

- Assume 5 injections in PS, triple-split at injection (→15b), double-split at PS flat top (→ 30b), another double-splitting to get 25 ns (→60b)
- Taking 2×60 bunches from PS to SPS
- Could possibly be further optimized

				no. collisions at		
	no. Pb bunches	no. p bunches	<pre>p bunch spacing (ns)</pre>	IP1/5	IP2	IP8
1232_Pb_1320_p_765_762_733	1232	1320	50	765	762	733
1232_Pb_1320_p_848_820_553	1232	1320	50	848	820	553
1232_Pb_1320_p_901_843_432	1232	1320	50	901	843	432
1232_Pb_2520_p_1092_793_755	1232	2520	25	1092	793	755
1232_Pb_2520_p_900_926_897	1232	2520	25	900	926	897

Simulation of typical fills

- Beam and luminosity evolution simulated with CTE for typical fill
- Assuming nominal HL-LHC Pb beam – parameters not yet achieved regularly
- $-\sqrt{s} = 8.54$ TeV (6.8 Z TeV beam energy)
- Level ALICE at 5×10²⁹ cm⁻¹ s⁻¹

Integrated luminosity in one month

• Possibly optimistic assumptions:

24 days of physics excluding commissioning, 50 % operational efficiency, Pb beam parameters reaching HL-LHC target

Total integrated luminosity (nb ⁻¹)	IP1/5	IP2	IP8	
1232_Pb_1320_p_765_762_733	474.	329.	149.	
1232_Pb_1320_p_848_820_553	517.	329.	111.	
1232_Pb_1320_p_901_843_432	542.	327.	85.4	
1232_Pb_2520_p_1092_793_755	628.	314.	143.	25 ns protons –
1232_Pb_2520_p_900_926_897	529.	325.	173.	feasibility to be proven

- With 2023 Pb parameters: ~20% lower integrated luminosity; ALICE less affected
- One p-Pb run is not enough to reach initial targets for Run3+Run4 (1.2 pb⁻¹ in ATLAS/CMS, 0.6 pb⁻¹ in ALICE/LHCb)

Potential performance improvements

- Higher intensity on Pb beam
 - Depends on what injectors can deliver on tight schedules
- 25 ns proton beam on 50 ns Pb beam
 - many p bunches would be useless, but the aim is to have as many collisions as possible
 - Can get many more collisions at LHCb without penalizing the other experiments
 - Needed feasibility studies: beam-beam effects, instrumentation
 - Gain up to 30% at ATLAS/CMS, 15% LHCb
- High-intensity proton beam
 - Many potential showstoppers to be studied: beam-beam effects, instrumentation, collisional losses, collimation, machine protection
 - Could give significant gain to ATLAS, CMS, LHCb
- Smaller β* and/or crossing angles
 - Enough aperture to squeeze β^* further or open collimators
 - For 2024 propose to open collimators \rightarrow less sensitive to beam losses
 - Unclear if we ever can go down in β^* operational experience needed
 - Otherwise, chance of reaching maybe $\beta^*=40$ cm at IP1/2/5, $\beta^*=1$ m at IP8
 - Gain up to maybe 20% at ATLAS/CMS, more at LHCb
- Large uncertainties apply and potential showstoppers must be studied

Higher peak luminosity \rightarrow Pb beam burns off much faster \rightarrow shorter fills \rightarrow bad for ALICE (levelled) \rightarrow Workaround: level all experiments, can keep fills longer

Gain mainly for ATLAS, CMS, LHCb, not ALICE (levelled)

Outline

- Introduction: LHC ion program and p-nucleus collisions
- Machine challenges with p-Pb operation
- Past results of p-Pb at LHC
- Future plans for p-nucleus and expected performance
 - p-O
 - p-Pb

• Conclusions

Conclusions

- Proton-nucleus collisions require a special mode of operation of the LHC
 - in addition to the challenges of the HL-LHC Pb beams
 - simultaneous operation of the two injector chains.
 - Nevertheless past runs were very efficient
- A full one-month run of p-Pb at $\sqrt{s} =$ 8.54 TeV could yield
 - ~0.3 pb⁻¹ at ALICE, ~0.45 pb⁻¹ at ATLAS/CMS, ~0.15 pb⁻¹ at LHCb
 - Performance strongly dependent on beam parameters and machine availability
 - Example: 2023 Pb-Pb run
 - nominal Pb beam parameters not yet achieved regularly
 - Long faults and low availability would yield lower integrated luminosity
 - Potential performance improvements under study (less important for ALICE)
 - Higher Pb intensity
 - 25 ns proton beam
 - High-intensity proton beam
- eam_____ Feasibility not proven potential showstoppers to be studied
 - Smaller β^* and crossing angles
- Short p-O run in 2025
- Continued program for nuclear collisions beyond Run 4 under study

Thanks for the attention!

Backup

25 ns proton schemes?

• 50 ns vs 25 ns

- With 50 ns, no "natural" collisions at LHCb if quadrant symmetry is respected
- With 25 ns, collisions do occur naturally at LHCb

• If we collide 50 ns Pb beam with 25 ns p beam

- Obviously many p bunches would be useless, but the aim is to have as many collisions as possible
- Can get many more collisions at LHCb without penalizing the other experiments
- Possibly need to think about beam-beam will get many more parasitic encounters.
 - Some studies done in <u>thesis</u> by Marc Jebramcik
- First try: take similar length as 2*30 b 50-ns scheme: take 2*60b at 25 ns to maximize overlap
 - To be checked: e-cloud aspects based on latest LHC experience
- 25 ns protons could give a potential performance gain, but feasibility and potential showstoppers needs studies
 - Beam-beam, instrumentation, ...

Recap: 2023 LHC configuration for Pb-Pb

- 2023 run relied on several new concepts first ion run with all HL-LHC ion upgrades implemented
 - Slip-stacked 50 ns beams from the injectors to provide higher intensity
 - Slip-stacking successfully set up, demonstrated LIU target intensity
 - Crystal collimation to handle the higher intensity without beam dumps or quenches
 - First high-intensity physics run relying on crystal collimation; excellent cleaning performance demonstrated
 - TCLD collimators + BFPP bump in IR2 to avoid quenches from BFPP secondary beam
 - Successful demonstration of factor 6 higher ALICE luminosity
 - New BFPP bump in IR8 to increase quench margin and allow higher LHCb luminosity
 - Full squeeze in ramp

	IP1/5	IP2	IP8
β* (m)	0.5	0.5	1.5
Spectrometer half crossing (µrad)	0	±72	-139
External half crossing (µrad)	170	±170	-135
Net half crossing (µrad)	170	±98	-274

	Run 3 design
Beam energy	6.8 Z TeV
Bunch spacing	50 ns
Bunch intensity (start of collision)	1.8x10 ⁸ Pb
Normalized transverse emittance	1.65 μm

Main operational schemes		Collisions		
N.o. bunches	Bunches/train	IP1/5	IP2	IP8
1240	56 / 40	1088	1088	398
1080	40	960	960	288
960	40	875	875	218

Reminder: 2023 performance

Integrated luminosity in full run around 2 nb⁻¹ to ALICE, ATLAS, CMS

About 2/3 of initial target, but still more than in 2018

• Performance negatively affected by several problems

- ALICE background
- Beam losses in the ramp
- Radiation effects on quench detection system
- 10 Hz losses
- Crystal channeling stability
- Intensity and emittance not reaching targets in most fills
 - Did not take all injections from LEIR during a part of the run due to limit on injected intensity from TDIS in the LHC

LHCb: 0.235 nb⁻¹

ALICE: 0.905 nb⁻¹

More details: LMC talk, LHCC talk

2023: Impact of problems on luminosity

- Could have had maybe up to 1.5-1.6 nb⁻¹ more without encountered problems
 - Only about 1/3 of the time spent in stable beams

R. Bruce, 2024.07.04 31

2024 ion operation

• 2024 pp reference run after TS2

- 2 days of setup, 6 days of physics
- Detailed splitting of days between 2024 and 2025 being discussed by the experiments
- See talk by Reyes

• 2024 Pb-Pb run

- 4 days of setting up challenging!
- 17 days of physics, including
 - 4 days of assumed intensity rampup
 - 1 day of VdM
 - ALICÉ polarity reversal → ~0.5 day commissioning
 - 2 days of MD
 - Might have maybe 11-11.5 days dedicated to physics with full machine
- The ion run is short must be very efficient

LHC planning 2024, v2.0

Levelling scenarios

• Different levelling scenarios studied with high-intensity proton beam (1.3e11 p/bunch)

- If we use "nominal" proton intensity
 - Significantly higher peak luminosity
 - Pb beam burns off much faster → shorter fills → bad for ALICE (levelled)
 - Workaround: level all experiments, can keep fills longer → potential gain for all
- Possible intensity
 - 1.3x10¹¹ p/bunch was reached so far with 50 ns protons
 - Studied on next slide
 - With 25 ns, aim at 2.2x10¹¹ p/bunch in Run 4 (HL-LHC)
- Simulated performance gain add

Feasibility of high-intensity protons

- To verify feasibility, several points need study
 - Beam-beam effects with weak and strong beam some studies done in <u>thesis</u> by Marc
 - Higher instantaneous luminosity → Collisional losses to be studied carefully
 - Instrumentation, especially BPMs: can they work reliably with a large intensity difference between beams?
 - Collimation: Would need crystal system on Pb beam and standard system on p beam → Significant commissioning overhead
 - BLM thresholds: can one set of thresholds protect the machine with both beam types?
 - Machine protection: cogging of full p beam OK? Potential overhead in qualification and intensity rampup

Physics goals from yellow report

- WG5 in the 2018 HL-LHC / HE-LHC physics workshop dealt with heavy-ion physics
- Yellow report with proposal for extended heavy-ion running: <u>CERN-LPCC-2018-07</u>
- Request up to the end of Run 4:

- Pb-Pb at $\sqrt{s_{NN}} = 5.5$ TeV, $L_{int} = 13$ nb⁻¹ (ALICE, ATLAS, CMS), 2 nb⁻¹ (LHCb) - pp at $\sqrt{s} = 5.5$ TeV, $L_{int} = 600$ pb⁻¹ (ATLAS, CMS), 6 pb⁻¹ (ALICE), 50 pb⁻¹ (LHCb) - pp at $\sqrt{s} = 14$ TeV, $L_{int} = 200$ pb⁻¹ with low pileup (ALICE, ATLAS, CMS) - p-Pb at $\sqrt{s_{NN}} = 8.8$ TeV, $L_{int} = 1.2$ pb⁻¹ (ATLAS, CMS), 0.6 pb⁻¹ (ALICE, LHCb) - pp at $\sqrt{s} = 8.8$ TeV, $L_{int} = 200$ pb⁻¹ (ATLAS, CMS, LHCb), 3 pb⁻¹ (ALICE) - O-O at $\sqrt{s_{NN}} = 7$ TeV, $L_{int} = 500 \ \mu b^{-1}$ (ALICE, ATLAS, CMS, LHCb) - p-O at $\sqrt{s_{NN}} = 9.9$ TeV, $L_{int} = 200 \ \mu b^{-1}$ (ALICE, ATLAS, CMS, LHCb) - Intermediate AA, e.g. $L_{int}^{Ar-Ar} = 3-9$ pb⁻¹ (about 3 months) gives NN luminosity equivalent to Pb-Pb with $L_{int} = 75-250$ nb⁻¹