

ALICE studies and plans in hadronic proton-nucleus collisions at the LHC

Florian Jonas for the ALICE collaboration

Lawrence Berkeley **National Laboratory**

Outline: An overview of experimental results & plans in three parts

Part 1

Cold nuclear matter effects

Constraining parton densities and quantifying cold nuclear matter effects with ALICE data

Part 2

Hot nuclear matter?

Do we only see cold nuclear matter effects in p-Pb collisions? QGP in p-Pb?

Part 3

All figure references given on respective slide of appearance

Introduction: LHC heavy-ion schedule

	2015-2018	2019-2021	2022-2025	2026-2028	2029-2032	2033-2034	2035-2041	
Run 1	Run 2	LS 2	Run 3	LS 3	Run 4	LS 4	Runs 5&6	
	Pb-Pb		Pb-Pb		Pb-Pb			
			0-0		p-Pb		Pb-Pb	
	p-Pb		p-O					
 Prospects for ALICE: in compare instantal 	proton-nucleu ncrease of MB (d to Run 2 neous luminos	gh-Luminosi CERN-2020-0 for heavy-ic	ty LHC 010 ons is already ongoin					
HL-LHC A brief rust system w (w.r.t p-F	expected to be in with oxygen ith similar num ^o b) but larger g		Pb-Pb ever Run 3					
 Prospects for Ultra-peripheral collisions (UPCs) in dedicated talk by Daniel Tapia Takaki tomorrow at 12:05 								

ALICE

- talk by Daniel Tapia Takaki tomorrow at 12:05

Introduction: ALICE Upgrades

Florian Jonas for the ALICE collaboration 4

Probing the initial state of heavy-ion collisions

Constraining the initial-state: nPDFs

ALICE

Coverage of lepton-A, **pion-A** and **proton-A** data in nPDFs

Florian Jonas for the ALICE collaboration 6

- A decade of LHC data provided significant
- tension between different global fits

Neutral meson production in p-Pb collisions

Florian Jonas for the ALICE collaboration

ALICE

Electroweak boson production in p-Pb collisions

5

Ratio

W^{\pm} boson production:

- Only participates in electroweak interaction
- Sensitive to light quark content of nucleus

ALICE measurement

- Measurement of $W^{\pm} \rightarrow \mu^{\pm}$ in p-Pb collisions at $\sqrt{s_{nn}} = 8.16$ TeV at forward and backward rapidities
- Indication of nuclear effects at forward rapidities, extending trend observed by CMS

Constrains on nPDFs at $x \sim 10^{-4}$

8 **Florian Jonas for the ALICE collaboration**

Isolated prompt photon production in pp and p-Pb collisions

 $\boldsymbol{R}_{\mathsf{pA}}$

1.0

0.8

0.6

0.4

Annihilation Fragmentation Compton σ^{γ} σ^γ

ALICE

- Prompt photons are produced directly in hard scattering \rightarrow sensitivity to initial state + no strong interaction in final state!
- **First hint of suppression** of prompt photon cross section due to nuclear effects in p-Pb collisions for $p_{\rm T}$ < 20 GeV/c
- In agreement with pQCD@NLO incorporating gluon shadowing at low-x in nPDFs
- Extending low-x reach of previous measurements in p-Pb collisions by **factor 2**

Publication in preparation, stay tuned!

Are p-Pb collisions a "clean" laboratory for initial-state effects? Is there QGP droplet in p-Pb collisions?

Measuring QGP observables in small systems

Rev.D 87 (2013) 9, 094034

Phys.

"The ridge" and (multi) anisotropic flow in p-Pb collisions

Initial-momentum correlations

Many scatterings

Florian Jonas for the ALICE collaboration 11

- Theory has room from momentum correlations in initial state to multiple scatterings in a QGP droplet

"The ridge" and (multi) anisotropic flow in p-Pb collisions

Florian Jonas for the ALICE collaboration 12

- Significant progress in precision measurement of identified charged particle v_2 since first observation of "the ridge" in p-Pb collisions (also multi-particle correlations)
- Theory has room from momentum correlations in initial state to multiple scatterings in a QGP droplet

Strangeness enhancement & multi-charm production

ALICE3 (and ITS3) will offer novel insights in the multi-charm sector!

13 **Florian Jonas for the ALICE collaboration**

- Jets are a key observable in heavy-ion collision; significant jet quenching observed in Pb-Pb collisions
- BUT: so far no jet quenching observed in p-Pb collisions within experimental uncertainties
- Significant increase in p-Pb statistics at HL-LHC \rightarrow higher sensitivity to energy loss in p-Pb

ALICE Run 1/2

ALICE

Florian Jonas for the ALICE collaboration 14

Pushing to lower Bjorken-*x*: Gluon saturation & the ALICE FoCal

Non-linear QCD at low-x

ALICE-PUBLIC-2023-001 Eur.Phys.J.C 82 (2022) 5, 428

Florian Jonas for the ALICE collaboration 16

How can we probe gluon saturation experimentally in a meaningful way?

QCD phenomena evolve logarithmically in x and Q^2 → logarithmically large experimental coverage in x and Q^2 desirable

Universality: theoretical description should be able to self consistently describe multiple observables in multiple collision systems

→ multi-messenger approach: measure multiple probes at various experimental facilities

Phasespace coverage for "saturation searches"

Forward p-A collisions: The ALICE FoCal

Florian Jonas for the ALICE collaboration 17

DIS in e-A collisions: The Electron-Ion Collider (EIC)

The ALICE Forward Calorimeter (FoCal)

- upgrade to the ALICE detector covering very forward rapidities $3.2 < \eta < 5.8 \to x \sim 10^{-6}$
- FoCal-E is a highly granular Si-W calorimeter combining two sensor technologies: 18 silicon pad layers (1x1cm²); two pixel layers $(30 \times 30 \mu m^2)$
- **FoCal-H** uses scint. fibres embedded into Cu tubes

The FoCal physics program

FoCal capabilities allow explorations of gluon saturation using a **multi-messenger approach**:

- Prompt photon production
- γ -hadron correlations
- Production of π^0 , η and vector mesons
- Jet measurements (e.g. dijet production)
- Vector meson photoproduction in UPCs

Prompt photon production at forward rapidities

- from perf. studies
- comparable to D meson measurement by LHCb

Prompt photons \rightarrow **no final state and hadronisation effects** \rightarrow **universality test of low**-*x* **formalism**

- separation of < 5mm!

20 Florian Jonas for the ALICE collaboration

simulated data + FoCal geometry in GEANT demonstrate FoCal capabilities to measure e.g. π^0, η and ω mesons

• expected luminosities in Run 4 sufficient to measure over large energy range of up to 2 TeV, also differentially in rapidity

• highly granular **pixel layers** allow for efficiencies of up to 80%, even for **photon** ALICE-PUBLIC-2023-004

$\eta \rightarrow \gamma \gamma$ reconstruction

π^0 reconstruction efficiency

γ -hadron and γ -jet correlations

Theory:

- Study of γ -hadron correlations offers additional sensitivity to low-x gluon dynamics
- Expectation of **yield suppression** and **de**-**correlation** due to saturation effects

Florian Jonas for the ALICE collaboration 21

- detector smearing

Possibilities for ALICE3 + FoCal?

Unprecedented coverage $\Delta \eta \sim 10$!

Unique possibilities for forward dijet production, γ -jet production and UPCs

22 **Florian Jonas for the ALICE collaboration**

Simulation physics studies in progress!

ALICE3 LOI: CERN-ALICE3 LHCC-2022-009 **ECAL Absorber** RICH **Muon chambers** Magnet FCT **Tracker Vertex detector Tracking:** $|\eta| < 4$; **ECAL:** $-1.6 < \eta < 4$ Jet

ALICE

	Inclusive DIS	SIDIS	DIS dijet	Inclusive in <i>p</i> +A	γ +jet in <i>p</i> +A	dijet in <i>p</i> +A
<i>xG</i> _{WW}	_	_	+	—	—	+
<i>xG</i> _{DP}	+	+	_	+	+	+

Multiple processes in e-A DIS and forward p-A collisions are theoretically described using the same dipole/quadrupole scattering amplitudes!

measurements in e-A DIS and forward p-A collisions \rightarrow test universal description of gluon saturated matter

Bayesian inference already used successfully as a powerful tool study QGP \rightarrow let's use it in the saturation regime!

The whole picture (EIC + forward LHC/RHIC) will be more than the sum of its parts!

Nucl.Phys.A 1026 (2022) 122447

Nucl. Phys. B 335 (1990) 115

Forward p+A collisions

LHC data allowed for significantly improved constrains of nuclear PDFs in the last decade

Studies in small systems continue to surprise us with QGP like "signatures"

ALICE will build a Forward Calorimeter (FoCal) for Run 4 with coverage $3.2 < \eta < 5.8$ (x ~ 10^{-6})

Deep theoretical connections between forward physics at LHC & RHIC and EIC

Not shown today: UPCs (see talk by Daniel tomorrow); p-O and O-O (see e.g. ALICE-PUBLIC-2021-004), many other interesting ALICE results not shown

Florian Jonas for the ALICE collaboration 24

- Distinction of p-Pb (cold nuclear matter) vs. Pb-Pb (hot nuclear matter) is no longer so clear!
- **Exploration of gluon saturation with a multi-messenger program for p-Pb collisions**
- Additional detector synergies between FoCal and ALICE3 for Run 5 & 6

