Photon-photon physics in pA collisions

Lucian Harland-Lang, University College London

Physics with high luminosity proton-nucleus collisions, CERN, Jul 4 2024

Photon-Photon Physics

• Both protons and heavy ions can act as source of initial-state photons \Rightarrow purely photon-initiated production possible.

with intact protons/rapidity gaps in final state:

* QCD interactions between hadrons can be largely ignored, i.e. ~ pure QED production

 \Rightarrow The LHC as a $\gamma\gamma$ collider! How does this differ from `standard' LHC collisions?

• This allows for exclusive/semi-exclusive production: colour singlet photon naturally leads to events

What does is it look like?

* By dealing with ~ pure QED initial state, many studies of the EW sector and BSM modifications to it open up...

LB JL — Draft November 3, 2018 — 13

Compressed SUSY

Axion-like Particles

LHL and M. Tasevsky, arXiv:2208.10526

C. Baldenegro et al., JHEP 06 (2018) 131

Top quarks

J. Howarth, arXiv:2008.04249

Anomalous couplings

C. Baldenegro et al, JHEP 12 (2020)

tau g-2

L. Beresford and J. Liu, PRD 102 (2020) 11, 113008 M. Dyndal et al., PLB 809 (2020) 135682

LbyL scattering/ALPS

C. Baldenegro et al, JHEP 06 (2018) 131, S. Knapen et al, PRL 118 (2017) 17, 171801, D. d'Enterria, G. da Silveira, PRL 116 (2016) 12

V. Goncalves et al., *Phys.Rev.D* 102 (2020) 7, 074014

PI production: building blocks

• (Semi)-Exclusive PI cross section given in terms of:

 $\star h \to \gamma h(h^*)$ form factor.

Survival factor' probability of no addition hadron-hadron interactions.

• Start with $h \to \gamma h(h^*)$ form factor...

- Start with $h \rightarrow \gamma h(h^*)$ form factor...
- Key point: form factors determined with percent level precision from wealth of lepton-hadron scattering data:

approach:

* Protons - both elastic and dissociative PI production can be modelled in `Structure function'

• Structure functions parameterise the $\gamma p \to X$ vertex: $W_{\mu\nu} = \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right) F_1(x,Q^2) + \frac{\hat{P}_{\mu}\hat{P}_{\nu}}{P \cdot a} F_2(x,Q^2)$

• Both elastic and inelastic SFs accounted for: 10⁴ measured proter is the first of the sector o 0³ $Q_{\rm cut}^2 = 10$ G 10² high Q² continuum region (PDFs: PDF4LHC15_nnlo_100) 10² high Q² continuum region 10 (PDFs: PDF4LHC15_nnlo_100) 0.35 low Q² continuum (Hermes GD11-P) 0.3 resonance region (CLASICB) 1 irect 0.25 low Q² continuum Q^2 lastic (Hermes GD11-P) **).1** ental 0.15 déterminations. 0.1 $Q^2 = 0.7 \overline{0}^5 \mathbf{1}^{\text{Ge}}$ 0.05 0 <u> </u> <u>u.9</u>1 0.1 0.2 0.3 0.4 0

0.1

- ★ Heavy ions form factor similarly v. well determined.
 - Low Q^2 : constant (~ Z)
 - Higher Q^2 : falls off as substructure probed.

$$F(Q^{2}) = \int d^{3} \vec{r} e^{i \vec{z} \cdot \vec{r}} \rho(\vec{r})$$

Ion charge density
$$P_{p}(\vec{r}) : P_{p} \int d^{3} \vec{r} e^{i \vec{z} \cdot \vec{r}} \rho(\vec{r})$$

$$P_{p}(\vec{r}) : P_{p} \int d^{3} \vec{r} e^{i \vec{z} \cdot \vec{r}} \rho(\vec{r})$$

$$= P_{p}(\vec{r}) : P_{p} \int d^{3} \vec{r} e^{i \vec{z} \cdot \vec{r}} \rho(\vec{r})$$

$$= P_{p}(\vec{r}) : P_{p} \int d^{3} \vec{r} e^{i \vec{z} \cdot \vec{r}} \rho(\vec{r})$$

$$= P_{p}(\vec{r}) : P_{p} \int d^{3} \vec{r} e^{i \vec{z} \cdot \vec{r}} \rho(\vec{r})$$

$$= P_{p}(\vec{r}) : P_{p}(\vec{r}) = P_{p}(\vec{r})$$

$$= P_{p}(\vec{r}) : P_{p}(\vec{r}) = P_{p}(\vec{r})$$

explicitly studied, and is small.

 $\begin{array}{c|c} \sigma & [\mathrm{pb}], \\ \hline \sigma & [\mathrm{pb}], \end{array} \end{array}$

LHL, V.A Khoze, M.G. Ryskin, SciPost Phys. 11 (2021) 064

• Key point: ~ Z^2 enhancement for each ion.

 $(PbPb) \quad \text{ATLAS, Phys. Lett. B 749, 242 (2015), Phys. Lett. B 777, 303 (2018)}$

	ATLAS data $[14, 16]$	Baseline	FF uncertainty	Dipo
$7 { m TeV}$	0.628 ± 0.038	0.742	$+0.003 \\ -0.005$	0.
$13 { m TeV}$	3.12 ± 0.16	3.43	± 0.01	3

N.B. $F(Q^2 = 0) = \int d^3 \vec{r} \rho(\vec{r}) = 2$

Survival Factor

- non-perturbative QCD sizeable uncertainty.
- Hadrons like to interact: naively expect $S^2 \ll 1$.
- parameter $b_{\perp} \gg R_{\rm QCD}$, and $S^2 \sim 1$.

• Probability of no additional inelastic hadron-hadron interactions. In general requires understanding of

• Exclusive PI production a special case: quasi-real photon $Q^2 \sim 0 \Rightarrow$ large average hh impact

- In a little more detail: can show that cross section dominated by region of impact parameter where $S^2 \sim 1$.
- Full account gives:

$S^2 \sim 0.7 - 0.9$

Depending on precise process, kinematics and beam.

- Uncertainty on S^2 small, at % level.
- Above plot is for pp case, but story is very similar for PbPb and pPb:

 $2r_p \rightarrow 2R_A$ and $(R_A + r_p)$ for AA and pA

contribution again outside these overlaps. Mild trend for lower S^2 in pA, AA.

• With steeper Q^2 fall off of ion form factors (i.e. larger ion size) ensuring dominant cross section

- Look at effective luminosities ~ cross sections for different beam configurations.
- Key points:
 - ★ Clear enhancement with Pb beams due to Z^2 in form factor.
 - ★ Steeper fall off in PbPb due to lower maximum photon energy

$$\omega < \omega_{max} \approx \frac{\gamma}{R} \sim 80 \text{ GeV} (Pb), \sim 2.5 \text{ TeV} (p)$$

•But need to scale by machine luminosities... CMS HIN Workshop, ECT* May'23

Effective Luminosities

David d'Enterria, ECT* workshop, May 23

14

Dilepton Cross Sections

• Consider dimuon production with some representative cuts. Similar scaling to before.

15

- Scaling by roughly representative luminosities, pPb lowest in terms of rate. Remain true even with 1 pb^{-1} .
- Well known fall off in PbPb rates not seen in pPb.

• Challenging, though note in terms of raw number of events in lower m_{ll} region still viable.

What can pA add?

→ p_

۸

- Seems clear that in te
- Initial state is (in thec
- So what can pA add?

★ There are differenc

W. Zha and Z. Tang, (2021), JHEP 08 (2021) 083

- •HO QED effects? Recen suggests could act in this (this size.
- But controversial. Previous studies predict much smaller effect, expect to be suppressed by $\sim Q^2/m_{\mu\mu}^2$

K. Hencken, E.A. Kuraev, V. Serbo, *Phys.Rev.C* 75 (2007) 034903...

ſ

' ' rly competitive with pp and AA. nd ion beams - see earlier slides.

(but not pp/pA) we have:

Unitary corrections? Studies suggest ~ 50% events accompanied by additional e⁺e⁻ pairs.
 Might these be vetoed on? Strongly peaked at low m_{ee} so perhaps not.

- Even for the standard candle case, picture in pp and PbPb in detail mixed, even if broadly agreement is good!
- Looking in pA collisions could provide useful additional handle here, completing the picture. Generally true for other processes beyond dilepton production.
- ★ Further possibility: ion dissociation.
 - Additional boosted neutron production measured by ATLAS/CMS Zero Degree Calorimeters detectors.

 Different neutron multiplicities have different impact parameter profiles \rightarrow modifies central kinematics.

LHL, *Phys.Rev.D* 107 (2023) 9, 093004

 Neutron dissociation categories and their kinematic dependence opens up wealth of new information from data. Broad agreement with range of LHC/RHIC data, but devil in

✦ Additional handle in measurements/searches.

★ All so far for PbPb. What about pA? Just one ion dissociating - somewhat simpler?

Aside: the Odderon

• Not strictly photon-photon, but pA collisions can serve as possible environment to search for odderon contribution to light meson production.

LHL et al., *Phys.Rev.D* 99 (2019) 3, 034011

 $A+A \rightarrow A+f_2+A^*$ pA instead of AA.

A(AA)

-0.6

-0.8

R. McNulty (

• Nonetheless backgrounds can be challenging. Ipooking at rapidity distributions may help. -0.4

• Background from pomeron-pomeron suppressed by UPC requirement, from photon-photon by

 \sim q/lq/Photon-induced

for CEP processes.

• For pp, pA and AA collisions. Weighted/unweighted events (LHE, HEPMC) available- can interface to Pythia/HERWIG etc as required.

SuperChic 5 - MC Implementation

- Version 5 now released. Significant updates to code:
- ★HepMC output now properly supported. ★Full testing suite added + cmake build system.
- ★Various bug fixes + code improvements.
- \star Future releases will be via github.
 - Collaboration/PRs welcome!

https://github.com/LucianHL/SuperChic

SuperChic (Public)	\$2 Ur	opin 💿 Unwatch 🔳 👻	Fork 3 - Star 2	
양 main 👻 양 58 Branches 🕓 0 Tags	Q Go to file t Add fi	le 👻 <> Code 👻	About	
🖶 LucianHL updated manual (#215) 🗸	75952fd · 5 days a	go 🕚 292 Commits	SuperChic Monte Carlo event generation for central exclusive production	
github/workflows	Add more Fortran compliers to CI (#202)	last week	D Readme ≰™ GPL-3.0 license -∿∽ Activity	
Cards	Add existing project files to Git	3 months ago		
bin 📃	Update input.DAT	3 months ago	☆ 2 stars ③ 3 watching	
cmake/Modules	Reintroduce findAPFEL for now (#201)	last week		
🖿 doc	updated manual (#215)	5 days ago	T STORS	
share/SuperChic	Better directory structure (#53)	3 months ago	Releases No releases published Create a new release	
src src	remove alphas warnings (#212)	last week		
test	Dump the shower config for each test job (#200)	last week	Packages No packages published Publish your first package Contributors 2	
CMakeLists.txt	input card in Build/bin (#210)	last week		
COPYING	Added GPLv3 as a license	3 months ago		
ChangeLog	Improvement of documentation (#195)	last month		
README.md	Update README.md to add installation alternatives. (#21	 5 days ago 	😐 andriish	

•

鐐

ator

Summary/Outlook

- probe the EW sector of the SM and extensions of it.
- but not negligible. No qualitative changes between p and A cases.
- expected cross sections measurable in low to intermediate mass region!
- to be exhaustive other motivations may be there to discuss.

* Photon-photon initiated production provides a relatively clean environment with which to

* Initial-state rather well understood, and impact of QCD interactions between hadrons small

★ In terms of expected rates, pA does not appear to be competitive with pp/AA. However

* Many physics effects still being disentangled in e.g. case of dilepton production. Having additional handle of pA measurement could be key here. Similarly for ion dissociation.

★ Have set the scene here, and presented some first thoughts in this direction, but not intended