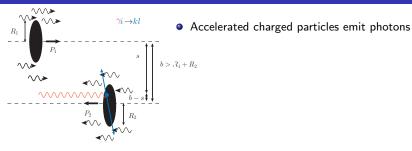


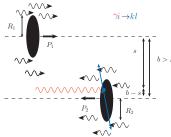
Inclusive quarkonium photoproduction at the LHC

universite

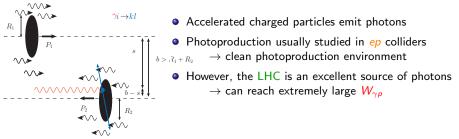
Kate Lynch Jean-Philippe Lansberg (IJCLab), Charlotte Van Hulse (UAH) & Ronan McNulty (UCD)

Physics with high-luminosity proton-nucleus collisions at the LHC CERN

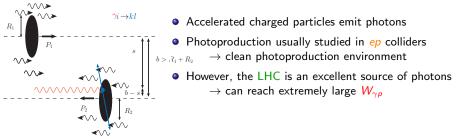



This project is supported by the European Union's Horizon 2020 research and innovation programme under Grant agreement no. 824093

K. Lynch (IJCLab & UCD)


Part I

Introduction



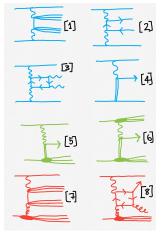

- Accelerated charged particles emit photons
- Photoproduction usually studied in ep colliders $b > R_1 + R_2$ \rightarrow clean photoproduction environment
 - However, the LHC is an excellent source of photons \rightarrow can reach extremely large $W_{\gamma p}$

- Energies available at the LHC:
 - $pp @ \sqrt{s} = 13 \text{ TeV} \rightarrow W_{\gamma p}^{max} \approx 5 \text{ TeV} \rightarrow x_{\gamma}^{max} \approx 0.14$ $p\text{Pb } @ \sqrt{s_{NN}} = 8.16 \text{ TeV} \rightarrow W_{\gamma p}^{max} \approx 1.5 \text{ TeV} \rightarrow x_{\gamma}^{max} \approx 0.03$
- Energies available at ep colliders:
 - $W_{\gamma p}^{\text{max HERA}} \approx 240 \text{ GeV}$
 - $W_{\gamma p}^{\mu } \approx 100 \text{ GeV}$

- Energies available at the LHC:
 - $pp @ \sqrt{s} = 13 \text{ TeV} \rightarrow W_{\gamma p}^{max} \approx 5 \text{ TeV} \rightarrow x_{\gamma}^{max} \approx 0.14$ $pPb @ \sqrt{s_{NN}} = 8.16 \text{ TeV} \rightarrow W_{\gamma p}^{max} \approx 1.5 \text{ TeV} \rightarrow x_{\gamma}^{max} \approx 0.03$
- Energies available at ep colliders:
 - $W_{\gamma p}^{\rm max \ HERA} \approx 240 \ {
 m GeV}$
 - $W_{\gamma n}^{\text{max EIC}} \approx 100 \text{ GeV}$
- At hadron-hadron colliders: Ultra Peripheral Collisions select photoproduction
 - Done so far only for exclusive processes

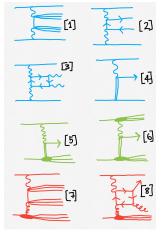
- Energies available at the LHC:
 - $pp @ \sqrt{s} = 13 \text{ TeV} \rightarrow W_{\gamma p}^{max} \approx 5 \text{ TeV} \rightarrow x_{\gamma}^{max} \approx 0.14$ $p\text{Pb } @ \sqrt{s_{NN}} = 8.16 \text{ TeV} \rightarrow W_{\gamma p}^{max} \approx 1.5 \text{ TeV} \rightarrow x_{\gamma}^{max} \approx 0.03$
- Energies available at ep colliders:
 - $W_{\gamma p}^{\rm max \ HERA} \approx 240 \ {
 m GeV}$
 - $W_{\gamma p}^{\text{max EIC}} \approx 100 \text{ GeV}$

• At hadron-hadron colliders: Ultra Peripheral Collisions select photoproduction

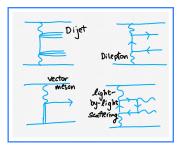

Done so far only for exclusive processes

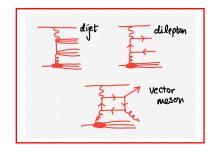
We will show: inclusive guarkonium photoproduction

can be measured via UPC at the LHC in proton-lead collisions


K. Lynch (IJCLab & UCD)

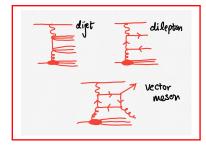
- So far focus of UPCs @ LHC on exclusive processes (fully determined final state) [1-4]
- Recently there were photoproduction studies with nuclear break up [5] (non-UPC [6*])
- Only published inclusive UPC study in PbPb: two-particle azimuthal correlations ATLAS, PRC 104, 014903 (2021)
- Coming soon: inclusive photonuclear dijets in PbPb [7]


- [1] Exclusive dijet: CMS, PRL 131 (2023) 5, 051901
- Exclusive dilepton: ATLAS, PRC 104 (2021) 024906, PLB 777 (2018) 303-323, PLB 749 (2015) 242-261; CMS, JHEP 01 (2012) 052
- Light-by-light scattering: ATLAS, Nature Phys. 13 (9) (2017) 852–858; CMS, PLB 797 (2019) 134826
- [4] Exclusive quarkonium: ALICE, EPJC 79 (5) (2019)
 402, PRL 113 (23) 232504; LHCb, JHEP 06 (2023)
 146, JPG 40 (2013) 045001, JHEP 10 (2018) 167
- [5] Diffractive quarkonium with nuclear break up: ALICE, PRD 108 (2023) 11
- [6] Peripheral* quarkonium photoproduction: ALICE, PRL 116 (2016) 22, 222301, PLB 846 (2023) 137467; LHCb, PRC 105 (2022) L032201
- Inclusive dijet: Not yet published: ATLAS-CONF-2022-021, ATLAS-CONF-2017-011

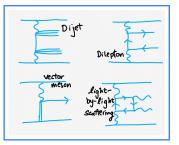

- So far focus of UPCs @ LHC on exclusive processes (fully determined final state) [1-4]
- Recently there were photoproduction studies with nuclear break up [5] (non-UPC [6*])
- Only published inclusive UPC study in PbPb: two-particle azimuthal correlations ATLAS, PRC 104, 014903 (2021)
- Coming soon: inclusive photonuclear dijets in PbPb [7]

- [1] Exclusive dijet: CMS, PRL 131 (2023) 5, 051901
- Exclusive dilepton: ATLAS, PRC 104 (2021) 024906, PLB 777 (2018) 303-323, PLB 749 (2015) 242-261; CMS, JHEP 01 (2012) 052
- Light-by-light scattering: ATLAS, Nature Phys. 13 (9) (2017) 852–858; CMS, PLB 797 (2019) 134826
- [4] Exclusive quarkonium: ALICE, EPJC 79 (5) (2019)
 402, PRL 113 (23) 232504; LHCb, JHEP 06 (2023)
 146, JPG 40 (2013) 045001, JHEP 10 (2018) 167
- [5] Diffractive quarkonium with nuclear break up: ALICE, PRD 108 (2023) 11
- [6] Peripheral* quarkonium photoproduction: ALICE, PRL 116 (2016) 22, 222301, PLB 846 (2023) 137467; LHCb, PRC 105 (2022) L032201
- [7] Inclusive dijet: Not yet published: ATLAS-CONF-2022-021, ATLAS-CONF-2017-011
- [8] Inclusive quarkonium photoproduction: NOT YET MEASURED AT THE LHC!

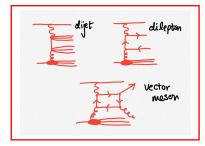
Exclusive: fully determined final state



Exclusive: fully determined final state

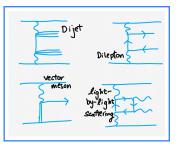

• Probe Generalised Parton Distributions

Inclusive: not fully determined final state

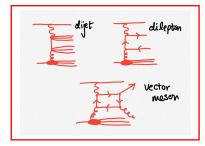


• Probe Parton Distribution Functions

Exclusive: fully determined final state

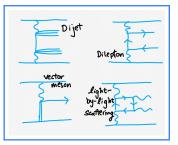


- Probe Generalised Parton Distributions
- Colourless exchange

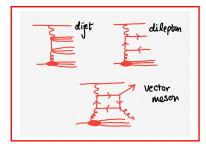


- Probe Parton Distribution Functions
- Colourful exchange

Exclusive: fully determined final state

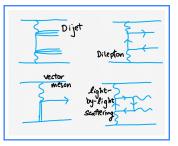


- Probe Generalised Parton Distributions
- Colourless exchange
- Experimentally clean: even @ LHC

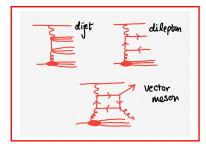


- Probe Parton Distribution Functions
- Colourful exchange
- Challenging: large backgrounds

Exclusive: fully determined final state

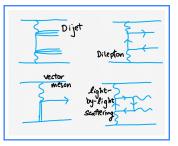


- Probe Generalised Parton Distributions
- Colourless exchange
- Experimentally clean: even @ LHC
- Smaller rates

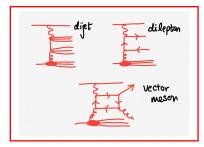


- Probe Parton Distribution Functions
- Colourful exchange
- Challenging: large backgrounds
- Larger rates

Exclusive: fully determined final state



- Probe Generalised Parton Distributions
- Colourless exchange
- Experimentally clean: even @ LHC
- Smaller rates
- Initial state kinematics **fully** determined by the final state



- Probe Parton Distribution Functions
- Colourful exchange
- Challenging: large backgrounds
- Larger rates
- Initial state kinematics **partially** determined by the final state

Exclusive: fully determined final state

- Probe Generalised Parton Distributions
- Colourless exchange
- Experimentally clean: even @ LHC
- Smaller rates
- Initial state kinematics **fully** determined by the final state
- Measured at the LHC

- Probe Parton Distribution Functions
- Colourful exchange
- Challenging: large backgrounds
- Larger rates
- Initial state kinematics **partially** determined by the final state
- Can and should be measured at the LHC

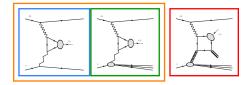
Quarkonium production status

- Discovered 50 years ago quarkonia are bound states of heavy quarks
- To date there is no theoretical mechanism that can describe all of the data
- Different models make different assumptions of the hadronisation
 - Colour Evaporation model: 1 free parameter per meson
 - $imes\,$ fails to describe di- J/ψ data
 - Colour Singlet model: no free parameters
 - \times tends to undershoot large p_T data
 - Colour Octet mechanism (extension to CSM via non-relativistic QCD): free parameters
 - × cannot simultaneously describe the photoproduction and polarisation data

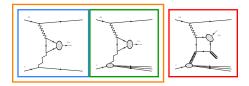
Maxim Nefedov, QaT 2023

LDME fit	J/ψ hadropr.	J/ψ photopr.	J/ψ polar.	η_c hadropr.
Butenschön et al.	$\checkmark (p_T > 3 \text{ GeV})$	✓	×	×
Chao et al. + η_c	$\checkmark (p_T > 6.5 \text{ GeV})$	×	1	1
Zhang et al.	$\checkmark (p_T > 6.5 \text{ GeV})$	×	1	1
Gong et al.	$\checkmark (p_T > 7 \text{ GeV})$	×	1	×
Chao et al.	$\checkmark (p_T > 7 \text{ GeV})$	×	1	×
Bodwin et al.	$\checkmark (p_T > 10 \text{ GeV})$	×	1	×

Quarkonium production status

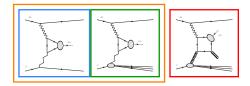

- Discovered 50 years ago quarkonia are bound states of heavy quarks
- To date there is no theoretical mechanism that can describe all of the data
- Different models make different assumptions of the hadronisation
 - Colour Evaporation model: 1 free parameter per meson
 - $imes\,$ fails to describe di- J/ψ data
 - Colour Singlet model: no free parameters
 - \times tends to undershoot large p_T data
 - Colour Octet mechanism (extension to CSM via non-relativistic QCD): free parameters
 - × cannot simultaneously describe the photoproduction and polarisation data

Maxim Nefedov, QaT 2023


LDME fit	J/ψ hadropr.	J/ψ photopr.	J/ψ polar.	η_c hadropr.
Butenschön et al.	$\checkmark (p_T > 3 \text{ GeV})$	✓	×	×
Chao et al. + η_c	$\checkmark (p_T > 6.5 \text{ GeV})$	×	1	1
Zhang et al.	$\checkmark (p_T > 6.5 \text{ GeV})$	×	1	1
Gong et al.	$\checkmark (p_T > 7 \text{ GeV})$	×	1	×
Chao et al.	$\checkmark (p_T > 7 \text{ GeV})$	×	1	×
Bodwin et al.	$\checkmark (p_T > 10 \text{ GeV})$	×	1	×

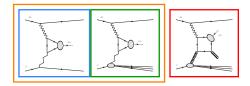
More inclusive photoproduction data \rightarrow possible at EIC in 10 years LHC today!

K. Lynch (IJCLab & UCD)



• Data exists for diffractive (exclusive and proton-dissociative) & inclusive/inelastic photoproduction @ HERA $\sqrt{s} = 320$ GeV

- Data exists for diffractive (exclusive and proton-dissociative) & inclusive/inelastic photoproduction @ HERA $\sqrt{s} = 320$ GeV
- Different contributions separated using experimental cuts on p_T and $z = \frac{P_P \cdot P_{\psi}}{P_P \cdot P_{\psi}}$...


diffractive region: $p_T < 1$ GeV, z > 0.9; inclusive region: $p_T > 1$ GeV, z < 0.9

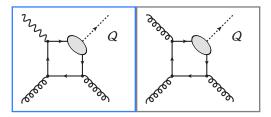
- Data exists for diffractive (exclusive and proton-dissociative) & inclusive/inelastic photoproduction @ HERA $\sqrt{s} = 320$ GeV
- Different contributions separated using experimental cuts on p_T and $z = \frac{P_P \cdot P_{\psi}}{P_P \cdot P_{\psi}}$...

diffractive region: $p_T < 1$ GeV, z > 0.9; inclusive region: $p_T > 1$ GeV, z < 0.9

- HERA result: $\sigma_{\text{exclusive}}^{\text{HERA}} \simeq \sigma_{\text{dissociative}}^{\text{HERA}} \simeq \sigma_{\text{inclusive}}^{\text{HERA}}$
- Expectation: $\sigma_{\text{exclusive}}^{\text{LHC}} \simeq \sigma_{\text{dissociative}}^{\text{LHC}} \simeq \sigma_{\text{inclusive}}^{\text{LHC}} \rightarrow \text{only difference is photon flux!}$
- Exclusive and proton-dissociative photoproduction have been measured @ LHC
- Expect that inclusive yield is sufficently large we will demonstrate this

- Data exists for diffractive (exclusive and proton-dissociative) & inclusive/inelastic photoproduction @ HERA $\sqrt{s} = 320$ GeV
- Different contributions separated using experimental cuts on p_T and $z = \frac{P_P \cdot P_{\psi}}{P_P \cdot P_{\psi}}$...

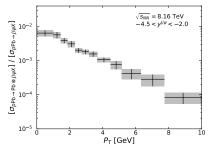
diffractive region: $p_T < 1$ GeV, z > 0.9; inclusive region: $p_T > 1$ GeV, z < 0.9

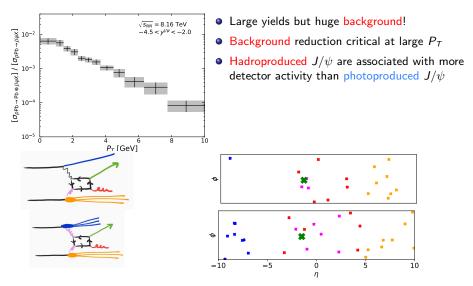

- HERA result: $\sigma_{\text{exclusive}}^{\text{HERA}} \simeq \sigma_{\text{dissociative}}^{\text{HERA}} \simeq \sigma_{\text{inclusive}}^{\text{HERA}}$
- Expectation: $\sigma_{\text{exclusive}}^{\text{LHC}} \simeq \sigma_{\text{dissociative}}^{\text{LHC}} \simeq \sigma_{\text{inclusive}}^{\text{LHC}} \rightarrow \text{only difference is photon flux!}$
- Exclusive and proton-dissociative photoproduction have been measured @ LHC
- Expect that inclusive yield is sufficently large we will demonstrate this
- As just discussed, measuring inclusive quarkonium photoproduction to understand the quarkonium hadronisation

Part II

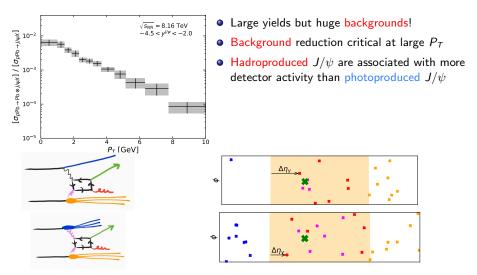
Feasibility of inclusive quarkonium photoproduction at the LHC

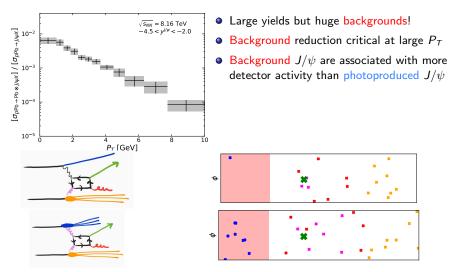
Inclusive quarkonium photoproduction at the LHC


- Anticipate sizeable photoproduction yield
- Large hadronic background must be shown to be suppressed

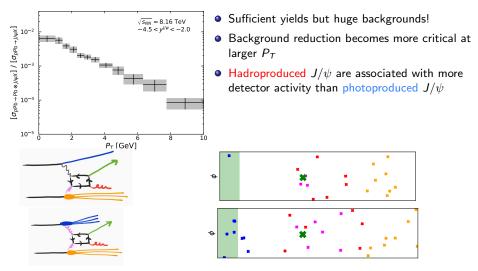

Proton-lead is the ideal collision system

- No ambiguity as to the photon emitter
- Enhanced photon flux w.r.t. pp
- Less pileup than pp


 $\propto 7^2$

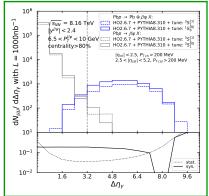

- Large yields but huge background!
- Background reduction critical at large P_T
- Hadroproduced J/ψ are associated with more detector activity than photoproduced J/ψ

• 3 background-reduction techniques based on different detector acceptances

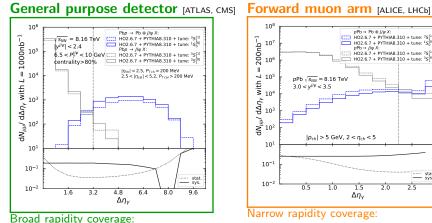


 3 background-reduction techniques based on different detector acceptances: central Δη_γ: distance in rapidity between main detector on photon-going side and closet particle activity

 3 background-reduction techniques based on different detector acceptances: I central II forward


K. Lynch (IJCLab & UCD)

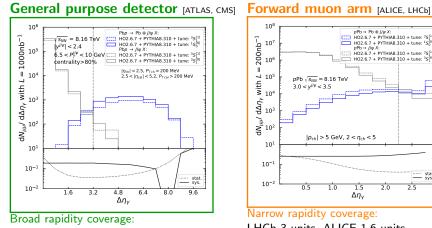
 3 background-reduction techniques based on different detector acceptances: I central II forward III far-forward


Method I: Rapidity gaps in LHC detectors

General purpose detector [ATLAS, CMS]

Broad rapidity coverage: CMS 10.4 units, ATLAS 9.8 units clean separation between photoproduction and hadroproduction

Method I: Rapidity gaps in LHC detectors



CMS 10.4 units, ATLAS 9.8 units clean separation between photoproduction and hadroproduction

LHCb 3 units, ALICE 1.6 units less clean separation between photoproduction and hadroproduction

sys

Method I: Rapidity gaps in LHC detectors

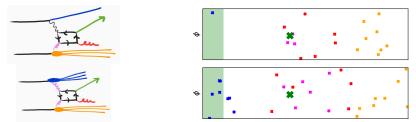
CMS 10.4 units, ATLAS 9.8 units clean separation between photoproduction and hadroproduction

LHCb 3 units, ALICE 1.6 units less clean separation between photoproduction and hadroproduction

• Selecting a cut value that minimises that statistical uncertainty: \rightarrow removes $\mathcal{O}(99.99\%)$ ($\mathcal{O}(99.9\%)$) of background events $\rightarrow S/B \gtrsim \mathcal{O}(1)$

K. Lynch (IJCLab & UCD)

Inclusive UPC @ LHC

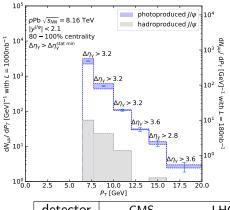

July 4, 2024

sys

Method II: forward activity with HeRSCheL at LHCb

- forward scintillator sensitive to charged particle activity in the region $5 < |\eta| < 10$
- Photoproduction events identified with no HeRSCheL activity

Method III: far-forward activity with zero-degree calorimeter at ALICE, ATLAS, & CMS


- ullet detector close to the beam pipe ($|\eta|\gtrsim$ 8) sensitive to neutral particles
- UPCs identified as most peripheral events (80 100% centrality)

[Already done in pPb collisions: ALICE, JHEP 02 (2021) 002]

• Selecting events with **0** neutrons in ZDC can further enhance signal purity

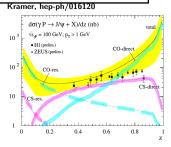
[We expect $\mathcal{O}(100\%)$ of the signal with no neutron emission]

Photoproduction yields

- Possible to isolate photoproduction with CMS and ATLAS using methods I & III
- With Run3+4 lumi, possible to extend the P_T reach from 10 GeV (HERA data) to 20 GeV
- Expect ψ' yield to be $\sim 1/20$ of J/ψ yield no P_T differential data from HERA!

detector	CMS	LHCb	CMS	LHCb
	<u>Run 2 lumi:</u>		Run 3+4 lumi:	
yield	$\mathcal{O}(10^3-10^5)$	$\mathcal{O}(10^3-10^4)$	$\mathcal{O}(10^4-10^6)$	$\mathcal{O}(10^4-10^5)$
P_T reach	14 GeV	8 GeV	20 GeV	14 GeV

K. Lynch (IJCLab & UCD)

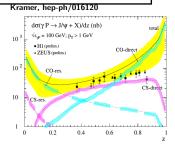

We have shown that it is possible to measure P_T -differential inclusive photoproduction cross sections at the LHC without waiting for the EIC

- What about $d\sigma/dz$ and as a function of $W_{\gamma p}$?
 - Fully equivalent to ep measurements

We have shown that it is possible to measure $P_{\mathcal{T}}$ -differential inclusive photoproduction cross sections at the LHC without waiting for the EIC

- What about $d\sigma/dz$ and as a function of $W_{\gamma p}$?
 - Fully equivalent to ep measurements
 - Study quarkonium hadronisation

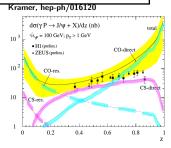
octet vs. singlet


We have shown that it is possible to measure P_T -differential inclusive photoproduction cross sections at the LHC without waiting for the EIC

- What about $d\sigma/dz$ and as a function of $W_{\gamma p}$?
 - Fully equivalent to ep measurements
 - Study quarkonium hadronisation

octet vs. singlet

• Handle on resolved-photon contribution direct and resolved photons


We have shown that it is possible to measure P_T -differential inclusive photoproduction cross sections at the LHC without waiting for the EIC

- What about $d\sigma/dz$ and as a function of $W_{\gamma p}$?
 - Fully equivalent to ep measurements
 - Study quarkonium hadronisation

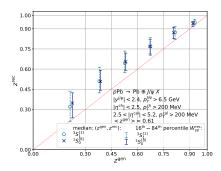
octet vs. singlet

• Handle on resolved-photon contribution direct and resolved photons

• Let us reconstruct the photon kinematics from the final state : $Pb(P_{Pb}) + p(P_{p}) \xrightarrow{\gamma(P_{\gamma})} Pb(P'_{Pb}) + J/\psi(P_{\psi}) + X(P_{X}) \text{ thus } P_{\gamma} = P_{\psi} + P_{X} - P_{p}$ • $W_{\gamma p} \simeq (2(P_{\psi} + P_{X} - P_{p}) \cdot P_{p})^{1/2} \& z = \frac{P_{p} \cdot P_{\psi}}{P_{p} \cdot (P_{\psi} + P_{X} - P_{p})}$

• In fact, we only need to measure $(P_X \cdot P_p)$ or equivalently $P_X^- = E_X - P_{X,z}$

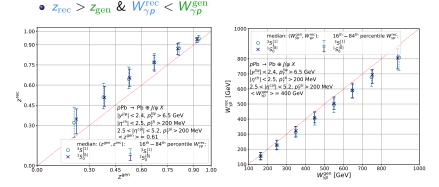
• NB: In the exclusive case, $P_X \simeq P_p \Rightarrow P_\gamma + P_p = P_\psi + P_p$ and $W_{\gamma p} \simeq M_\psi e^{-y_\psi}$


K. Lynch (IJCLab & UCD)

Kinematic reconstruction: results

• Limited detector coverage
$$\Rightarrow$$
 $P^-_{reconstructed}$ $<$ $P^-_{generated}$

Kinematic reconstruction: results


- Limited detector coverage $\Rightarrow P^-_{\text{reconstructed}} < P^-_{\text{generated}}$
- This results in the following biases;

• $z_{\rm rec} > z_{\rm gen}$

Kinematic reconstruction: results

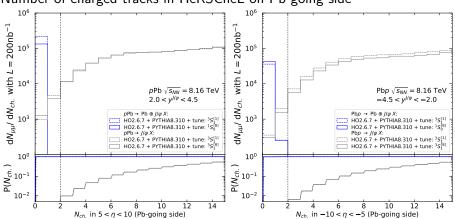
- Limited detector coverage $\Rightarrow P^-_{\text{reconstructed}} < P^-_{\text{generated}}$
- This results in the following biases;

- For CMS and ATLAS: z reconstruction allows for O(5-6) bins (similar to HERA) improves with increasing values of z
- $W_{\gamma p}$ reconstruction allows for $\mathcal{O}(10)$ bins

improves for decreasing values of $W_{\gamma p}$

Summary and outlook

- A proton-lead collision system allows the LHC to be used as a photon-nucleon collider
 - Feasible to measure inclusive J/ ψ , ψ' and Υ photoproduction at the LHC
 - Complementary to HERA measurements with a doubled P_T reach
 - It can be done now $\mathcal{O}(10)$ years before the EIC
- CMS and ATLAS are the most favourable experiments with the largest P_T reach and broadest psuedorapidity coverage


(CMS has additional advantage of measuring $P_{\mathcal{T}} \rightarrow 0$ GeV)

- Possible to make measurements at ALICE and LHCb too!
- Despite the impossibility to measure the intact Pb ion,

possible to reconstruct z and $W_{\gamma p}$

- Binning competitive with HERA, confirms the reach in $W_{\gamma p}$ up to 1 TeV !
- Possibility to isolate resolved-photon contributions

Backup

Number of charged tracks in HeRSCheL on Pb going side

K. Lynch (IJCLab & UCD)