BEYOND THE STANDARD MODEL OPPORTUNITIES IN P-A COLLISIONS AT THE LHC

SYLVAIN FICHET

UFABC, SAO PAULO

PA@CERN WORKSHOP 05/07/24

GOAL OF THIS TALK:

COMPARE THE PERFORMANCE OF THE P-A MODE WITH RESPECT TO P-P AND A-A MODES IN BSM SEARCHES

ULTRAPERIPHERAL COLLISIONS

ULTRAPERIPHERAL COLLISIONS

ULTRAPERIPHERAL COLLISIONS

UPCs are a great place to search for physics Beyond the Standard Model (BSM):

- Little underlying activity
- Possibility of tagging the intact protons
- Huge coherent fluxes from heavy nuclei

[See talks from Michael Pitt Lucian Harland-Lang,...]

PHOTON COLLISIONS

Scalings for two identical source nuclei "A" with atomic mass A and atomic charge Z:

PHOTON COLLISIONS

Scalings for two identical source nuclei "A" with atomic mass A and atomic charge Z:

• Photon flux : $f_{\gamma|A} \propto Z^2$ hence $\sigma(AA \rightarrow AA + ...) \propto Z^4$

PHOTON COLLISIONS

Scalings for two identical source nuclei "A" with atomic mass A and atomic charge Z:

• Photon flux : $f_{\gamma|A} \propto Z^2$ hence $\sigma(AA \rightarrow AA + ...) \propto Z^4$

• C.o.m. energy : $\sqrt{s_{\gamma\gamma}^{\text{max}}} \sim \frac{\sqrt{s}}{m_p R} \approx \frac{\sqrt{s}}{5.5 A^{1/3}}$

(focusing on A=Pb from now on)

System	p – p	Pb – Pb
$\sqrt{s_{NN}}$	14 TeV	5.5 TeV
\mathcal{L}_{int}	10 fb^{-1} (1 month)	10 nb^{-1} (1 month)
$\sqrt{s_{\gamma\gamma}^{\max}}$	4.5 TeV	160 GeV
$\langle N_{\rm pile-up} \rangle$	25	$5 \cdot 10^{-4}$
p- tagging	Yes	No

The p-p and Pb-Pb modes are complementary.

System	р — р	p – Pb	Pb — Pb
$\sqrt{s_{NN}}$	14 TeV	8.8 TeV	5.5 TeV
\mathcal{L}_{int}	10 fb^{-1} (1 month)	1 pb ⁻¹ (1 month)	10 nb^{-1} (1 month)
$\sqrt{s_{\gamma\gamma}^{\max}}$	4.5 TeV	2.6 TeV	160 GeV
$\langle N_{\rm pile-up} \rangle$	25	0.05	$5 \cdot 10^{-4}$
p- tagging	Yes	Doable [See Michael's talk]	No

The p-p and Pb-Pb modes are complementary.

The p-Pb mode seems to draw advantages from both. Let us try to quantify that, In the context of BSM searches via UPCs.

How to conveniently compare the BSM cross sections $\sigma_{
m s}$

$$\sigma_{\gamma\gamma} = \sigma\left(\sum_{\xi=1}^{\xi} c_{\xi}\right) ?$$

A simple ansatz:
$$\sigma_{\gamma\gamma,n}(s) \propto \frac{1}{s} \frac{s^n}{\Lambda^{2n}}$$

How to conveniently compare the BSM cross sections

$$\sigma_{\gamma\gamma} = \sigma\left(> \frac{\xi}{\xi} < \right) ?$$

A simple ansatz: $\sigma_{\gamma\gamma,n}(s) \propto \frac{1}{s} \frac{s^n}{\Lambda^{2n}}$

Classification:

• $n = 0 \supset SM-like (\sqrt{s} \gg m)$ [SF/Gersdorff '12, SF/Gersdorff/Lenzi/Royon/Saimpert '12]

- $n = 1 \supset \text{Resonant EFTs} (\sqrt{s} \gg m)$ [SF/Gersdorff '15, ...]
- n = 2• n = 3• n = 4Non-resonant EFTs Ex: F^4 operators, continuum EFTs, etc [SE/Medias/Ouiros '22]

$$\sigma_{\gamma\gamma,n}(s) \propto \frac{1}{s} \frac{s^n}{\Lambda^{2n}}$$

1) RESONANCES

RESONANT EFTS

EFTs of particles linearly coupled to the SM:

SPIN 2 EXAMPLE: A KK GRAVITON

Warped extra dimensions

[Randall/Sundrum '99, Csaki '04 (review), Gherghetta '10 (review), Cabrer/Gersdorff/Quiros '09, and many many more, see e.g. Agashe, Pomarol, ...]

SPIN 2 PRODUCTION IN UPCS

Highest rate at equal running time:

p-Pb is competitive in the $m_G \sim (100 - 300)$ GeV range

At lower mass, Pb-Pb performs better by a factor ~ 30

SPIN-0 EXAMPLES

Many UV motivations:

CP-odd

PQ Axion [Peccei/Quinn '77, ...]

GBs from Composite Higgs models [Kaplan/Georgi/Dimopoulos '84, ...] String Landscape [Svrcek/Witten '06, Arvanitaki/Dimopoulos/Dubovsky/Kaloper/March-Russell '10, ...]

CP-even

Radion from Extra Dimensions [Csaki/Hubisz/Lee '07, Randall/Sundrum '99,...] Dilaton [Conlon '06, Goldberger/Grinstein/Skiba '08,...] Radial Mode in Composite Higgs models [SF/Gersdorff/Pontón/Rosenfeld '16, ...] Extension of Higgs Sector [Lee, Fayet, Flores/Sher, ...] Higgs Portal [Schabinger/Wells '05, ...]

AXION PRODUCTION IN UPCS

p-Pb performs below Pb-Pb by a factor 2-4 in $f_{\gamma\gamma}$

2) NON-RESONANT EFTS

$F^4 \text{ EFT}$ (n = 4)

Many UV motivations:

Linear coupling to SM

• All heavy neutral particles shown before [SF/Gersdorff '12, SF/Gersdorff/Lenzi/Royon/Saimpert '12]

• Charged particles [SF/Gersdorff '12, ...]

Quadratic coupling to SM

• Polarizable dark particles [SF '16]

String-motivated

• Born-Infeld QED [Fradkin/Tseytlin '85 ...]

 $F^4 \, \text{EFT}$ (*n* = 4)

Cross section goes as $\sigma_{\gamma\gamma}(s) \propto \frac{s^3}{\Lambda^8}$.

At equal running time,
$$\frac{N_{\rm pp}}{N_{\rm pPb}} = O(10)$$
.

Other characteristics do not produce a clear favorite:

$\langle N_{\rm pile-up} \rangle$	25	0.05
p- tagging	Yes	Doable

• p-Pb performance for F^4 operators search may be close to p-p.

A detailed analysis would be welcome!

CONTINUUM EFT

Examples:

- Graviton continuum from AdS braneworld: $\sigma_{\gamma\gamma}(s) \propto \frac{s^3}{\Lambda^8}$ (n=4) [Brax/SF/Tanedo '19
- Graviton continuum from linear dilaton braneworld: $\sigma_{\gamma\gamma}(s) \propto \frac{s^2}{\Lambda^6}$ (n=3) $N_{\rm pp}$

At equal running time, $\frac{N_{pp}}{N_{pp}} = O(1).$

 AdS_5, LD_5

 $h_{\mu\nu}$

m

We classified BSM scenarios to be searched in UPCs into (roughly) two types.

We classified BSM scenarios to be searched in UPCs into (roughly) two types.

Low-mass resonances: The p-Pb mode competes with Pb-Pb mode. p-Pb performs better for $m \sim (100 - 300)$ GeV, while p-Pb event yields is lower than Pb-Pb by up to O(30) for lower masses.

We classified BSM scenarios to be searched in UPCs into (roughly) two types.

Low-mass resonances: The p-Pb mode competes with Pb-Pb mode. p-Pb performs better for $m \sim (100 - 300)$ GeV, while p-Pb event yields is lower than Pb-Pb by up to O(30) for lower masses.

Non-resonant EFTs: The p-Pb mode competes with p-p mode. p-Pb event yields is only moderately smaller than in p-p. There seems to be no strong favorite based on the other characteristics of the modes. A detailed study of effective operators searches in p-Pb would be useful.

We classified BSM scenarios to be searched in UPCs into (roughly) two types.

Low-mass resonances: The p-Pb mode competes with Pb-Pb mode. p-Pb performs better for $m \sim (100 - 300)$ GeV, while p-Pb event yields is lower than Pb-Pb by up to O(30) for lower masses.

Non-resonant EFTs: The p-Pb mode competes with p-p mode. p-Pb event yields is only moderately smaller than in p-p. There seems to be no strong favorite based on the other characteristics of the modes. A detailed study of effective operators searches in p-Pb would be useful.

Idea to take away:

From the viewpoint of BSM searches, the p-Pb mode is relatively competitive with BOTH p-p and Pb-Pb modes. Hence, in the context of BSM searches, assuming no prior on the type of BSM scenario, it could make sense to extend the duration of the p-Pb run.

THE END

AXION FLUXES (PRELIMINARY) [da Silveira/SF/Machado/...]

AXION FLUXES (PRELIMINARY) [da Silveira/SF/Machado/...]

[Currently under analysis]

[Less suppressed, benefits from p tagging]

A MOTIVATION FROM DATA ?

Taken from [Crivellin 2405.15933]. None of these excesses are statistically significant.