CMS studies and plans in photon-induced pPb at the LHC (and connections to the UPC PbPb program)

Gian Michele Innocenti for the CMS collaboration Massachusetts Institute of Technology

Physics with high-luminosity proton-nucleus collisions at the LHC Jul 4-5, 2024, CERN

Constraining parton dynamics in nuclei in (x,Q²)

Accessing the saturation scale is expected to be easier in nuclei (due to the higher initial partonic density)

In nuclei, saturation expected at higher x

- does it exist? is it experimentally reachable?
- what is its shape in (x, Q^2) ?
- what is the dependence on A?

Ultra-Peripheral heavy-ion collisions

Ultra-peripheral collisions (impact parameter $b > R_A + R_b$) • Flux of photon is proportional to Z²

Photon kinematics:

• p_T < ħ/R_A ~ 30 MeV • E_{max} ~ O(100) GeV at LHC.

<u>When running on PbPb, LHC is effectively a vy and vN collider!</u>

 \rightarrow access to high-energy photon-nuclear collisions to test nuclear matter effect in abscence of final-state effects (as in pPb)

K. Hencken, M. Strikman, R. Vogt, P. Yepes, Phys. Rept. 458:1-171, 2008 3

Recent QCD UPC measurements in PbPb collisions with CMS and highlights for Run 3

Neutron multiplicity
category
0n0n
0nXn + Xn0n
XnXn
0n1n + 1n0n
1nXn + Xn1n
1n1n

See d'Enterria's talk at Moriond QCD 2024 (link)

CMS-HIN-21-015

Neutron multiplicity category

Coherent J/ ψ photoproduction in UPC PbPb collisions

 $Q^2 \sim M^2_{cc} GeV$, $x_A \sim shadowing$ (gluon PDFs)² - 4.0< y*< -2.5 (forward)

Two-way ambiguity can limit the constraining power due to large uncertainty on the determination of x!

• The initial direction of the photon is not fully defined

→ access to gluon PDF in **absence of hadronic interactions**

At fixed y, contributions from different x regions (higher and lower)

Coherent J/ ψ in PbPb UPCs with forward-neutron tag with CMS

For events with Xn "on the same side" of the J/ ψ :

 \rightarrow select low impact-parameter events (P_{EMD} ~ 1/b²)

→ high-energy photon, low-x events

\rightarrow increased sensitivity to low-x effects without "W+W-" ambiguities → Have we observed saturation?!

Untagged di-jets in yN scatterings

Sizeable contamination from "resolved"-photon processes:

Dynamic constraints on (x, Q²)

by varying dijet kinematics

ATLAS, <u>ATLAS-CONF-2017-011</u> 7

"Open" heavy-flavor and jet photoproduction in UPCs

- Simple pQCD description down to $p_T=0$
- "in-vacuum" environment with limited final-state effects
- dynamical acces to a wide region of x, Q^2 region down to low x_{BJ}
- \rightarrow scan the region where high-density effects should emerge

- $x_{min} \approx 10^{-4}$ with low p_T, forward probes (LHC)
- $\cdot Q_{\min}^2 \approx m_{c\bar{c}}^2$

S. Klein, R. Vogt et al: <u>Phys. Rev. C, v66, 2002</u>

Experimental strategy for "hard" inclusive photoproduction

Event selection: Xn0n events with "rapidity gap".

Rapidity gap in the direction of outgoing photon

Heavy-quark tagged jets: \rightarrow high-statistics up to high-p_T $D^0 \rightarrow K^-\pi^+$ reconstruction: \rightarrow Trace charm quark down to low p_T

at least one neutron in the ZDC (Xn)

Triggering on yy, yN events as a big experimental challenge!

- Interaction rate of $\gamma\gamma$, γN in heavy-ions $\mathcal{O}(MHz)!!$

ZDC Layout 4 HAD sections – stacked behind each other HAD4 HAD3 HAD2 HAD1 EM 1-5 Reaction Plane Detector (RPD) 5 EM sections - next to each other BEAM

• Hardware trigger system (Level-1 has max accepted rate in heavy-ions about 20-30 kHz)

Converting CMS into a yy, yN detector for the "LHyC"

Zero-Degree Calorimeter (ZDC) as a trigger detector

New trigger algorithms for yy and yN "hard" events

- → photonuclear high-Q² triggers (ZDCXOR && L1 jet)
- \rightarrow photonuclear low-Q² triggers (ZDCXOR)
- \rightarrow yy and diffractive triggers

 \rightarrow integrate ZDC in the Level-1 (hardware) trigger-emulation chain \rightarrow develop a strategy for fast online calibration

L1 trigger efficiency vs $D^0 p_T$ (2023 data)

Recent UPC measurements in pPb collisions: a few highlights

11

$\rho_0(770)$ photoproduction in pPb UPC collisions at 5.02 TeV

Results are consistent with those of the H1 and ZEUS Collaborations at HERA

CMS, <u>Eur. Phys. J. C 79 (2019) 702</u>, <u>CMS-FSQ-16-007</u>

Upsilon production in <u>exclusive</u> photonuclear pPb events

 \rightarrow sensitive to generalized parton distributions (GPDs) in the proton for $10^{-4} < x < 10^{-2}$

CMS, <u>Eur. Phys. J. C 79 (2019) 277</u>

Prospects for photon-induced measurements in Run 3 and Run 4: some highlights

14

Jets and open heavy-quarks in photonuclear yp scatterings

- New constraints on proton nPDFs, GDF, TMD at the highest γp center of mass energies available
- Baseline for γPb measurements (searches for beyond DGLAP evolution)

ZEUS

Jets and open heavy-quarks in photonuclear yp/yPb scatterings

- New constraints on proton nPDFs, GDF, TMD at the highest yp center of mass energies available
- Baseline for γPb measurements (searches for beyond DGLAP evolution)

Hard-scattering production at central rapidities with information on the number of neutrons in ZDC:

- \rightarrow stronger discrimination power on low-x nuclear matter
- \rightarrow new experimental challenges for ZDC reconstruction and calibration

Diffractive production of jets and heavy quarks

→ test for fractorization: diffractive PDFs ⊗ partonic coefficient functions

- LHC vs HERA
- hadronic vs photoproduction
- direct vs resolved photoproduction ...
- → benchmark for PbPb measurements

Ilkka Helenius, <u>arXiv:2107.07389</u>

17

Exclusive and inclusive quarkonium photoproduction

 $\gamma + p \rightarrow J/\psi$ p collisions:

Sensitive to the proton structure at high-gluon densities (So far, no indication of gluon saturation, even down to $x\sim10^{-5}$ in a free nucleon)

From Kate Lynch's talk Jean-Philippe Lansberg (IJCLab), Charlotte Van Hulse (UAH), Ronan McNulty (UCD)

- Anticipate sizeable photoproduction yield
- Large hadronic background must be shown to be suppressed

Proton-lead is the ideal collision system

- No ambiguity as to the photon emitter
- Enhanced photon flux w.r.t. $pp \propto z^2$
- Less pileup than *pp*

The upgraded CMS detector for Run 4 (Phase II)

Trigger / HLT / DAQ

- L1/HLT rate x7.5
- DAQ: $6 \rightarrow 60 \text{ GB/s}$

tracking capabilities at Level-1:

 sample the entire cross section of photon-induced collisions in both pPb and PbPb events

Radiation-hard ZDC + PPS upgrades

 ξ down to ~ 1.5%

New endcap calorimeters (HGCal) Unprecedented granularity $|\eta| < 3$

New silicon tracker Improved granularity Lighter material budget $|\eta| < 2.4 \rightarrow |\eta| < 4$

New MIP Timing Detector (MTD) Precision timing $|\eta| < 3$ **Particle Identification!**

High-resolution, large acceptance silicon tracker ($|\eta| < 4$)

from 100 x 150 to 50 x 50 μ m² pixel size Tracking out to $|\eta| < 4 !!$

Reduced material budget by up to 2x

Improved p_T resolution by about 25%

Improved mass resolution for resonances

CMS, <u>CMS-TDR-014</u>

Impact parameter resolution improved by 40%
Improved heavy flavor measurements (B/D hadrons & b/c-jet tagging)

MIP timing detector (MTD)

Unlock a wide set of semi-inclusive "DIS-like" measurements with identified hadrons with CMS

CERN-LHCC-2019-003

A new ZDC CMS detector

Joint ATLAS & CMS effort: radiation-hard ZDCs for Run 4

- Crucial part of heavy-ion min. bias trigger from Run 3 onwards
 - Used to identify & characterize ultra-peripheral collisions
 - Bias estimation for centrality, especially in small systems
 - Exclusively HI detector (removed for high-lumi pp)

Upgraded Precision Proton Spectrometer (Run 4 and 5)

Basic working principle:

 \rightarrow direct measure of the $\xi = \Delta p/p$

PPS upgrade will further extend the ξ acceptance of the legacy PPS:

- 1.42 < ξ < 20 % for the first 3 stations (from Run 4)
- 0.33 < ξ < 20 % for the first 3 stations (from Run 5)

See Michael Pitt's talk

Protons which lose a fraction of momentum at the interaction point ($\xi = \Delta p/p$) are deflected away from the beam and measured by PPS

Highlight: exclusive vector-meson production in pA

 \rightarrow Proof of principle for proton (and ion) tagging with the upcoming pO/OO run (scheduled for 2025)

• Vector mesons (Spin 1) are produced in $\gamma - IP$ interactions

Characterizing the emergence of collective phenomenon

New insights into collective phenomena in "small" systems as well as high color-density hadronization: • push for the highest γp multiplicities, exploiting the extended pseudorapidity coverage and PID capabilities

Credit: Yen-Jie Lee

Multiplicity

Synergies with the physics program at the Electron-Ion Collider

UPC at the LHC **EIC** \rightarrow <u>control on the photon virtuality (Q²)</u> \rightarrow very low x reach and on the scale of the interaction

We think is essential to have a strong pA and AA program at the LHC also in Run 5/6 to while EIC will be taking data!

2038

Synergies with the physics program at the Electron-Ion Collider

UPC at the LHC **EIC** \rightarrow <u>control on the photon virtuality (Q²)</u> \rightarrow very low x reach and on the scale of the interaction

We think is essential to have a strong pA and AA program at the LHC also in Run 5/6 to while EIC will be taking data!

Thank you for your attention!

CMS Precision Proton Spectrometer (Run 2 and 3)

Since 2016 operated in standard *pp* runs, PPS TDR (TOTEM-TDR-003) • Located ~ 200m from the interaction point in both arms, approach the beam down to a few mm

In Run 2 and 3: PPS sensitive to proton's Δp/p in the range 3 - 15 %

Basic working principle:

Protons which lose a fraction of momentum at the interaction point ($\xi = \Delta p/p$) are deflected away from the beam and measured by PPS

Material from Michael Pitt's talk @ HI Forward

Coherent J/ ψ in PbPb UPCs with forward-neutron tag with CMS

First coherent measurement in different neutron classes → inputs to disentangle low from high energy γN events

CMS, Phys. Rev. Lett. 131 (2023) 262301

$$\frac{\mathrm{d}\sigma_{J/\psi}^{\mathrm{in}j\mathrm{n}}(y)}{\mathrm{d}y} = n_{\gamma\mathrm{A}}^{\mathrm{in}j\mathrm{n}}(\omega_1) \,\sigma_{J/\psi}(\omega_1) + n_{\gamma\mathrm{A}}^{\mathrm{in}j\mathrm{n}}(\omega_2) \,\sigma_{J/\psi}(\omega_2) \,\sigma_{J/\psi}(\omega_2)$$

- in jn = (0n0n, 0nXn, XnXn)
- $\omega_{1,2} = \omega_{1,2}(y)$ two possible photon energies
- $n_{\gamma A}(\omega)$ is the photon flux (from theory)
- $\sigma_{J/\psi}(\omega)$ the coherent photoproduction cross section for a single γA interaction, averaged over a range of y

