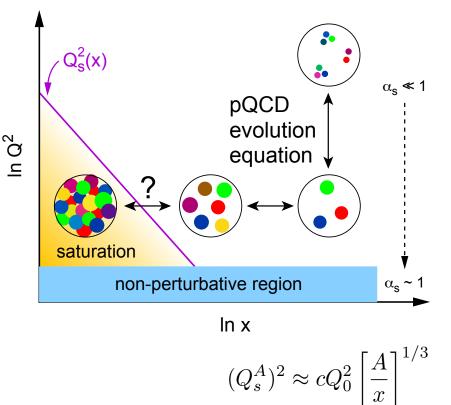


Office of Science

Physics results, plans and ideas for UPC p-A physics at ALICE

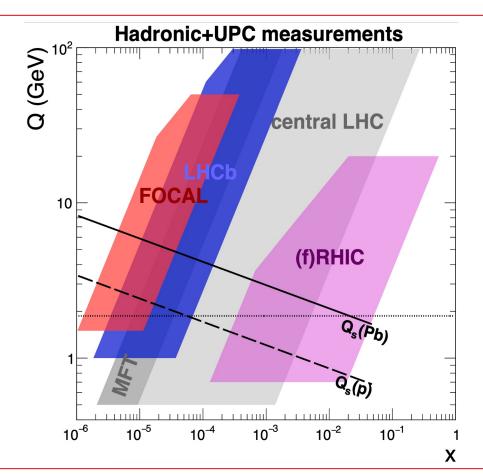
Daniel Tapia Takaki

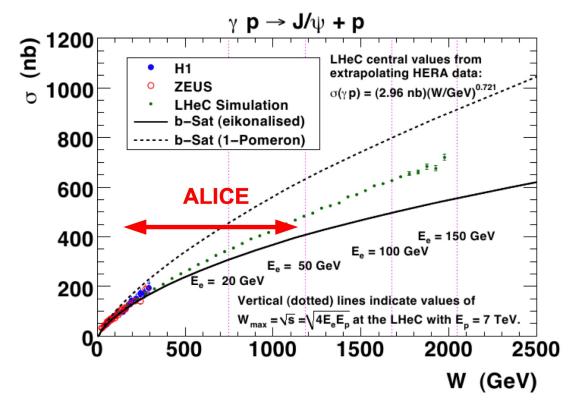
Physics with high-luminosity proton-nucleus collisions at the LHC workshop


CERN, Geneva

July 4-5, 2024

Gluon saturation matters


At high energies, or for heavy nuclei at lower energies, gluon saturation is predicted


- Non-linear QCD evolution equations introduced, but how is gluon saturation triggered?
- Experimental observables needed to map out the transition between the dilute and saturation regimes. The onset of saturation
- Can we determine experimentally the saturation scale (Q_S)?
- Is there a state of matter formed by gluon saturated matter with universal properties?

Experimental program

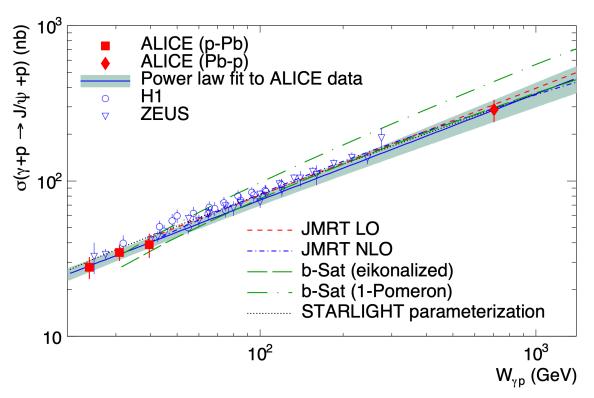
- The <u>Electron-Ion Collider</u> will be a dedicated QCD machine with the precision and control capabilities for studying gluon saturation and shadowing in a systematic way like never before.
- The <u>LHC</u> explores the high energy domain for both hadronic and photon-induced reactions
- <u>FoCal</u> at ALICE will explore a unique low-x regime reaching x down to 10-6

Predictions pre-LHC data for exclusive J/ψ off protons

- Deviations from the HERA power-law trend predicted as signatures of saturation
- At high energies also possible to distinguish among saturation models

Two-fold ambiguity on the photon direction in symmetric systems

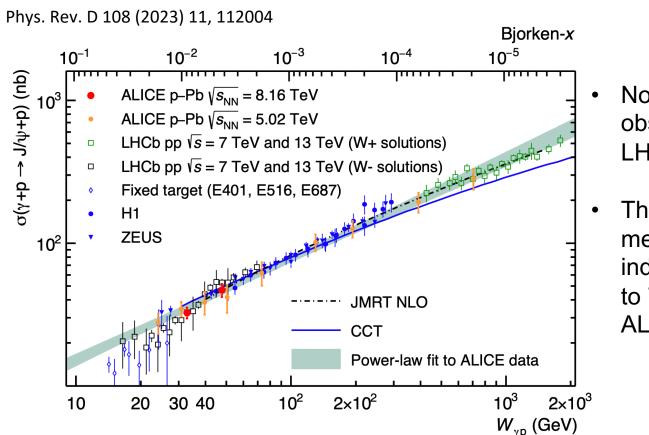
$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$


Symmetric systems (pp, A-A) suffer from the two-fold ambiguity on the photon direction

$$\frac{d\sigma}{dy} = \frac{\frac{\text{Positive rapidity}}{n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)}$$

Only UPC asymmetric systems (p-Pb) analyses provide <u>a model</u> independent way of the energy dependence of $\sigma(\gamma p)$

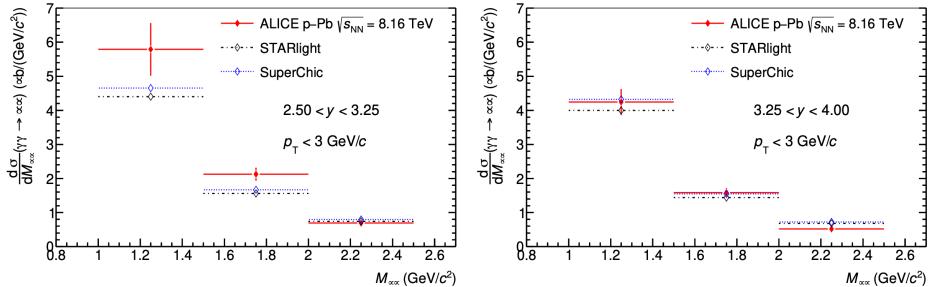
Exclusive J/ψ measurements by ALICE using Run 1 (2013)


Phys. Rev. Lett. 113 (2014) 23, 232504

- No change with respect to HERA power-law growth observed at low energies up to 700 GeV
- UPC p-Pb collisions have no ambiguity on the photon energy

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Exclusive J/ψ in UPC p-Pb (2023)



- No change in the behavior observed between HERA and LHC energies
- The highest energy point measured in a modelindependent way is only up to 700 GeV in UPC p-Pb by ALICE

Exclusive dimuons in UPC pPb

Phys. Rev. D 108 (2023) 11, 112004

Two-photon measurements providing tests to the photon flux calculations

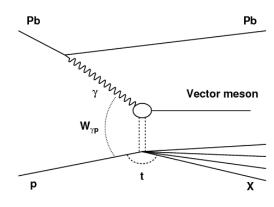
LO QED calculations, but different modeling

- STARLight: point-like charge with radial cutoff
- SuperChic: Charge distributions using form factors

Dissociative J/ψ in UPC

See talk by A. Ridzikova at DIS'24 Figures from her

COHERENT

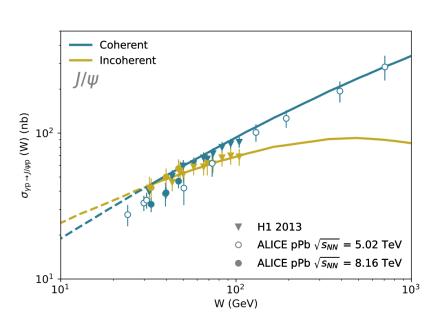

$$\frac{\mathrm{d}\sigma^{\gamma^*\mathrm{H}\to\mathrm{VH}}}{\mathrm{d}|t|}\bigg|_{\mathrm{T.L}} = \frac{\left(R_g^{\mathrm{T,L}}\right)^2}{16\pi} |\langle \mathcal{A}_{\mathrm{T,L}}\rangle|^2$$

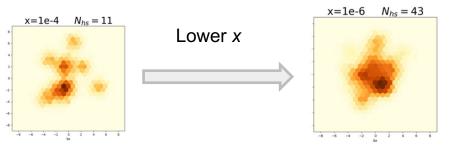
INCOHERENT J. Cepila, G. Contreras and DTT Phys. Lett. B 766 (2017) 186-191

number of hot spots

DISSOCIATIVE

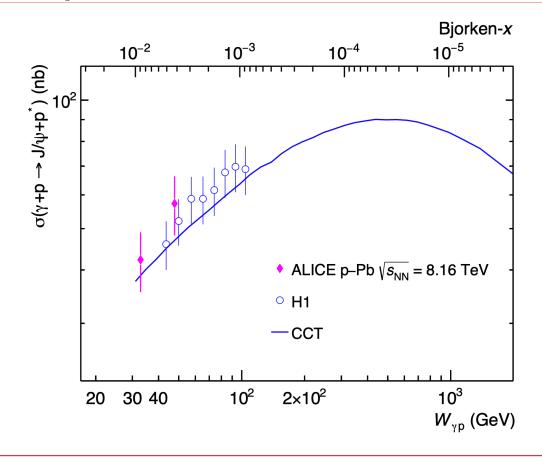
In the hot spot model, the increase in gluon distribution with decreasing Bjorken-x is described by the energy-dependent evolution of the


Daniel Tapia Takaki

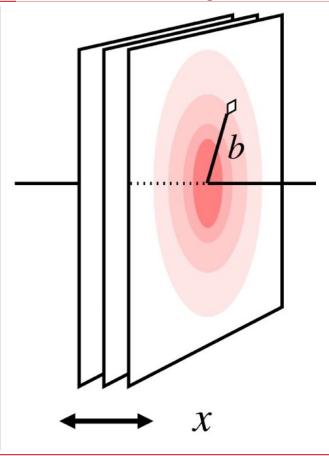

 $\frac{d\sigma^{\gamma^* p \to VY}}{d|t|}\Big|_{T,L} = \frac{\left(R_g^{T,L}\right)^2}{16\pi} \left(\langle |\mathcal{A}_{T,L}|^2 \rangle - |\langle \mathcal{A}_{T,L} \rangle|^2 \right)$

Gluon saturation and dissociative J/ψ in UPC

See talk by A. Ridzikova at DIS'24 Figures from her


$$\frac{d\sigma^{\gamma^* p \to VY}}{d|t|} \bigg|_{T,L} = \frac{\left(R_g^{T,L}\right)^2}{16\pi} \left(\langle |\mathcal{A}_{T,L}|^2 \rangle - |\langle \mathcal{A}_{T,L} \rangle|^2 \right)$$

In the hot spot model, the increase of large hot spots within the proton reaches a point of significant overlap, and the resulting uniformity reduces both the variance and the dissociative cross section


Phys. Lett. B 766 (2017) 186-191

Dissociative J/ψ in UPC pPb

Phys. Rev. D 108 (2023) 11, 112004

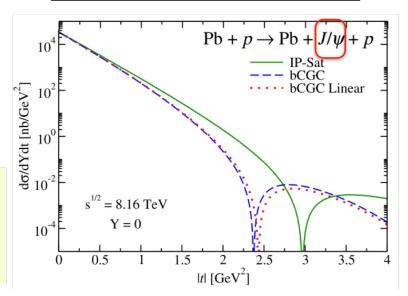
Transverse profile of the target

UPCs can probe the transverse profile of the target!

Appearance and location of diffractive dips can be signatures of gluon saturation

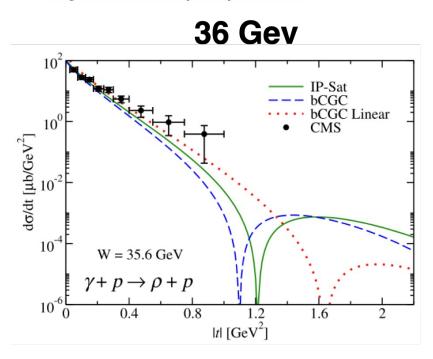
Transverse profile of the target

V. Goncalves, et al. Phys. Lett. B791 (2019) 299-304

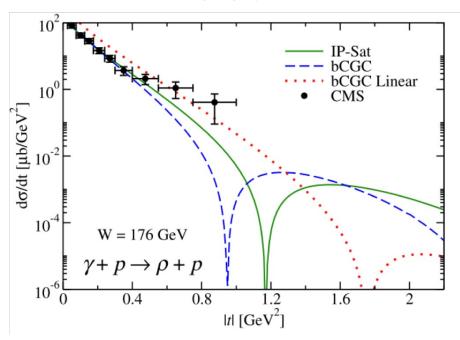


Location of the Diffractive dips:
Different for IP-Sat and bCGC

Energy dependence of the t-distribution: onset of gluon saturation

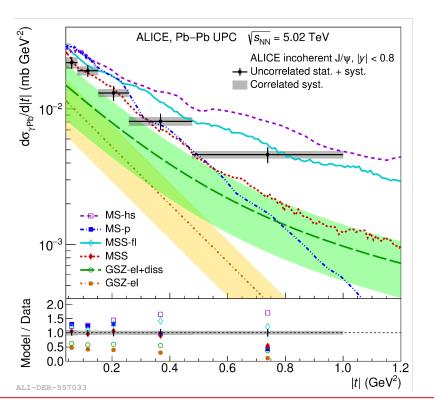

Signature of gluon saturation

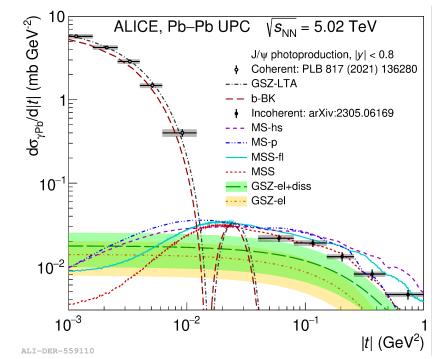
Study of ρ^0 is very promising since diffractive dips expected at lower t values



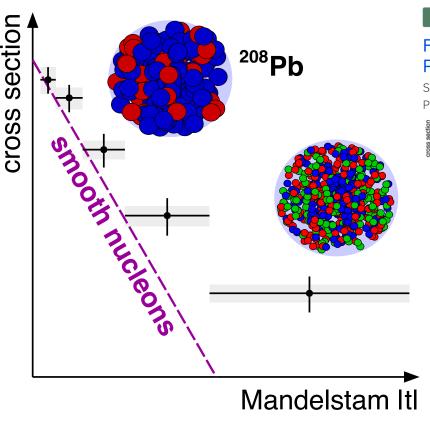
t-dependence measurement of UPC ρ^0

V. Goncalves, et al. Phys. Lett. B791 (2019) 299-304


176 Gev

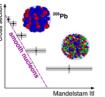

t-dependence of coherent and incoherent J/ψ in UPC Pb-Pb

First measurement of the |t|-dependence of incoherent J/ψ photonuclear production


Phys.Rev.Lett. 132 (2024) 16, 162302

Probing for gluonic "hot spots" in Pb using UPCs for the first time!

t-dependence of incoherent J/ψ in UPC Pb-Pb



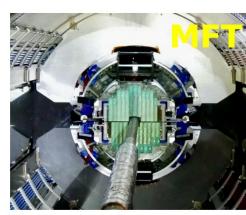
Editors' Suggestion

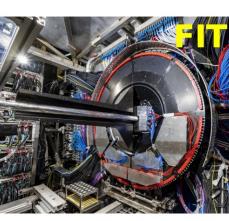
First Measurement of the |t| Dependence of Incoherent J/ψ Photonuclear Production

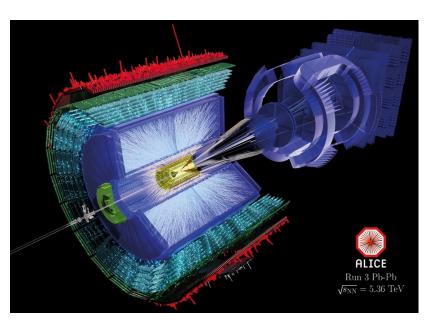
S. Acharya et al. (ALICE Collaboration)

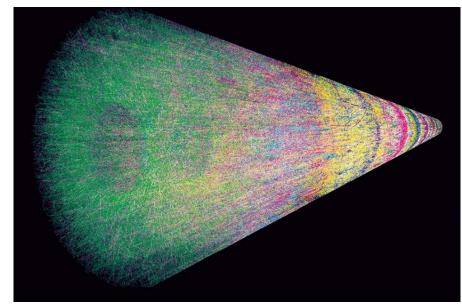
Phys. Rev. Lett. 132, 162302 (2024) - Published 19 April 2024

The first experimental measurement of the incoherent photonuclear production of J/ψ in ultraperipheral heavy-ion collisions is better explained by the presence of subnuclear quantum fluctuations of the gluon field.

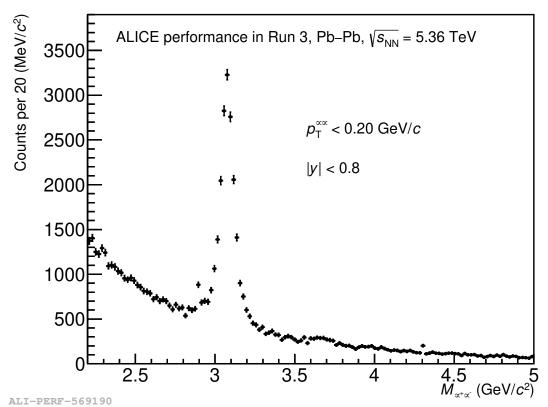

Show Abstract +


ALICE in Run 3: A major upgrade


- 50 times increase in the readout rate
- 3 to 6x improvement in pointing resolution

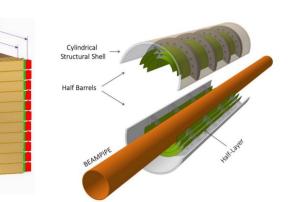


Secondary vertexing for forward muons


ALICE in Run 3: Trigger-less mode

 $2~\mu s$ time frame of Pb-Pb collisions at a 50 kHz interaction rate in the TPC

Great performance for reconstructing UPC vector mesons


- The trigger-less mode will enable to develop further the UPC physics program in ALICE from Run 3
- New processes, including inelastic UPC events will be possible

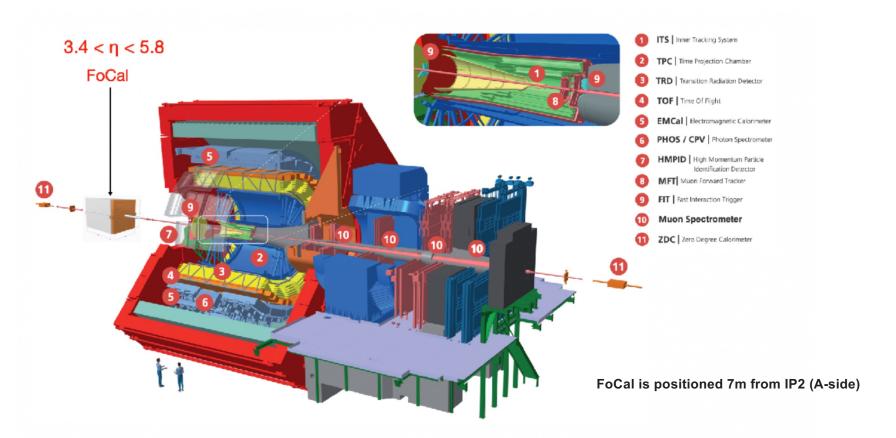
ALICE timeline

Phase IIb Upg

ALICE 2

FoCal and ITS3

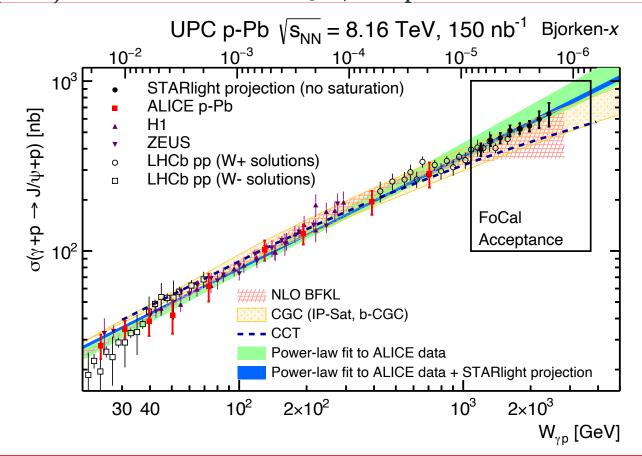
ALICE gets the green light for new subdetectors


CERN's dedicated heavy-ion physics experiment, ALICE, is upgrading its Inner Tracking System and adding a forward calorimeter for the next phase of the LHC upgrade

ALICE 3

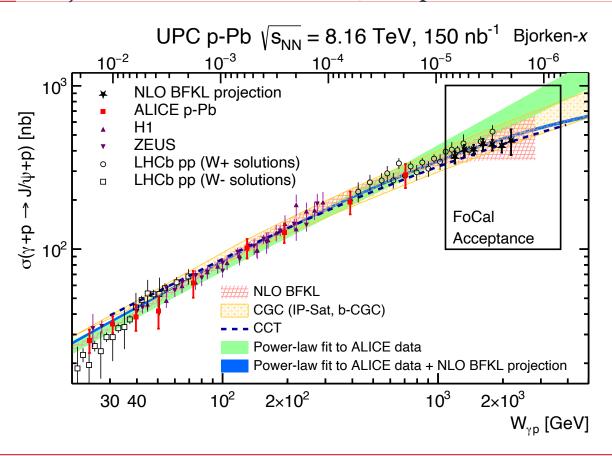
25 APRIL, 2024 | By ALICE collaboration

The ALICE FoCal project for Run 4


UPC VM projections for FoCal

Physics with high-luminosity proton-nucleus collisions at the LHC workshop

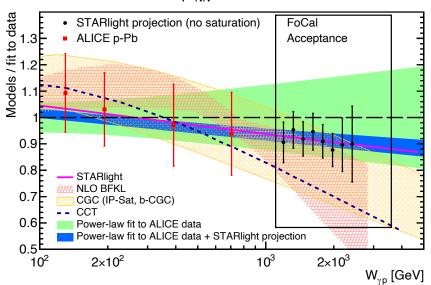
VM	$\sigma(p + Pb \rightarrow p + Pb + VM)$	$\sigma(3.4 < \eta_{1.2} < 5.8)$	Yield
	(1 1 1)	$p \rightarrow FoCal$	$p \to FoCal$
$ ho^0$	35 mb	140 nb	21,000
ϕ	1.7 mb	51 nb	7,700
J/ψ	$98~\mu\mathrm{b}$	400 nb	60,000
$\psi(2S)$	$16 \mu b$	8.9 nb	1,300
$\Upsilon(1S)$	220 nb	0.38 nb	60
		$Pb \rightarrow FoCal$	$Pb \rightarrow FoCal$
$ ho^0$	35 mb	17 nb	2,600
ϕ	1.7 mb	5.3 nb	800
J/ψ	$98~\mu\mathrm{b}$	36 nb	5,400
$\psi(2S)$	$16~\mu\mathrm{b}$	0.53 nb	80
$\Upsilon(1S)$	220 nb	0.67 pb	~ 0


Daniel Tapia Takaki

Projections for exclusive J/ ψ off protons

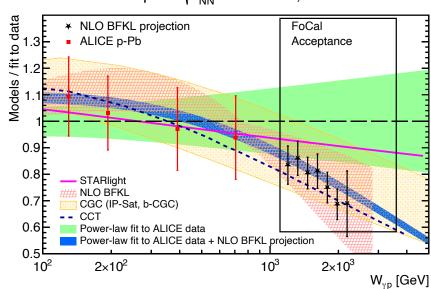
- Deviations from a power-law trend should signal non-linear QCD dynamics
 - Here, projections based on STARlight which uses a parametrization based on HERA data $\sigma_0(W_{\gamma p}/W_0)^\delta$
- For all figures, 60% efficiency. Conservative assumption after acceptance selection

Projections for exclusive J/ψ off protons

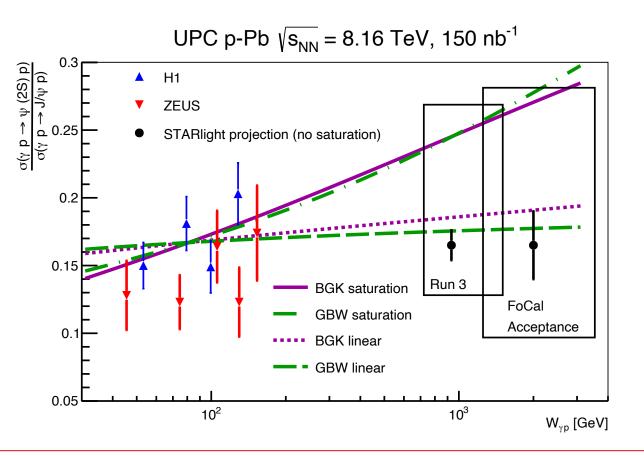

- Projections assuming a broken power-law
- Projected points based on NLO BFKL calculation

$$\sigma(\gamma p) \approx \frac{\sigma_0}{\frac{1}{W_{\gamma p}^{\delta}} + A}$$

Projections for exclusive J/ ψ off protons


Power-law behavior (STARlight)

UPC p-Pb
$$\sqrt{s_{NN}} = 8.16 \text{ TeV}, 150 \text{ nb}^{-1}$$


Broken power-law behavior (NLO BFKL)

UPC p-Pb
$$\sqrt{s_{NN}} = 8.16 \text{ TeV}, 150 \text{ nb}^{-1}$$

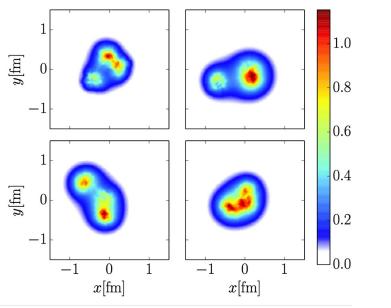
FoCal measurement would be sufficient to observe a deviation from a power law behavior, if exists

Projections for exclusive $\psi(2S)$ and J/ψ cross section ratio in γp

- Different wave functions and dipole sizes evolution result in great sensitivity to non-linear QCD effects
- No sensitivity at HERA, but expected at the LHC
- Projections here based on STARlight

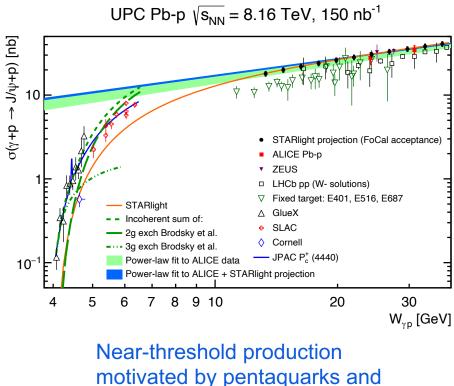
Projections for dissociative J/ ψ cross section ratio in γp

W_{vp} [GeV]

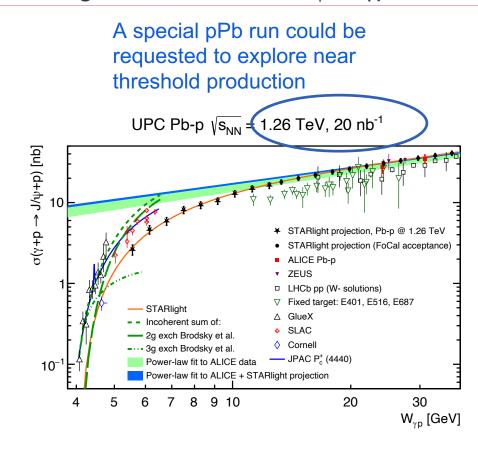

J. Cepilia, J.G. Contreras and DTT Phys. Lett.B 766 (2017) 186-191

H1 Data

Run 3 Projection Run 4 Projection

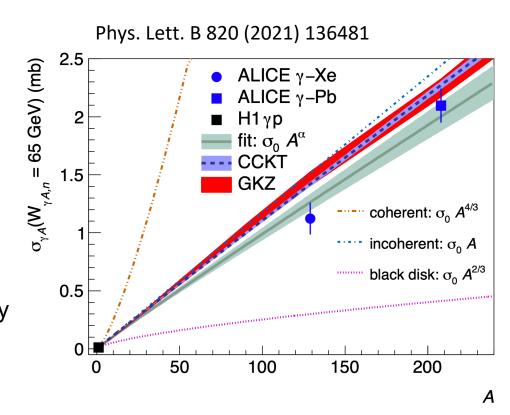

In the Good-Walker approach, sensitive to subnucleonic fluctuations of the gluon density Projections here based on the MS model

Event-by-event fluctuations



$$\frac{d\sigma(\gamma p \to \mathrm{J}/\psi Y)}{dt} = \frac{R_g^2}{16\pi} \left(\left\langle \left| A(x,Q^2,\vec{\Delta}) \right|^2 \right\rangle - \left| \left\langle A(x,Q^2,\vec{\Delta}) \right\rangle \right|^2 \right) \mathrm{W}}{\left\langle X \right\rangle}$$

Idea: Near threshold and intermediate energies for exclusive J/ψ in γp



exotic theory mechanisms

Ideas for the UPC O-O program

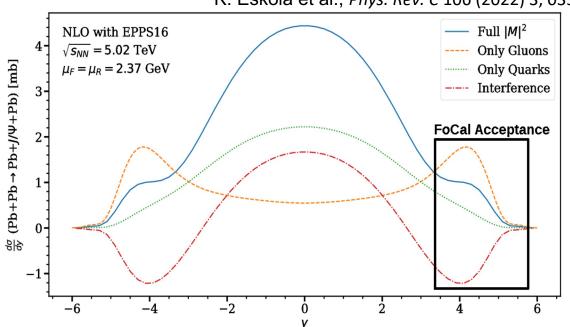
- With sufficient luminosity, it would be possible to study the A-dependence of UPC J/ψ for p, O and Pb
- Possible to do the A-dependence for UPC ρ⁰ for p, O, Xe and Pb
- The probability for Coulomb excitation in coincidence with vector meson production in O-O is small. So, unlikely to be able to extract r0 photonuclear cross section using 0nXn and XnXn fragmentation

Thanks!

Additional slides

Projections for VMs in γPb

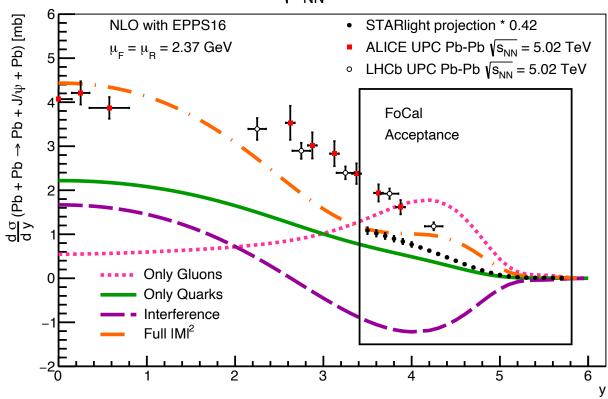
 $\mathcal{L} = 7.0 \text{ nb}^{-1}$


\overline{VM}	$\sigma(Pb + Pb \rightarrow Pb + Pb + VM)$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
ρ^0	5.0 b	$20 \ \mu \mathrm{b}$	140,000
ϕ	440 mb	$10~\mu\mathrm{b}$	70,000
J/ψ	39 mb	$53~\mu\mathrm{b}$	370,000
$\psi(2S)$	7.5 mb	$1.1~\mu\mathrm{b}$	7,500
$\Upsilon(1S)$	$94~\mu \mathrm{b}$	5.0 nb	35

Projections for VMs in γPb

Recent NLO calculations indicate importance of quark contribution and large scale uncertainties

The FoCal region is gluon dominated


K. Eskola et al., *Phys. Rev. C* 106 (2022) 3, 035202

- At LO predicted to be proportial to the square of the gluon density (Z. Ryskin Phys. C 57, 89 (1993), but several caveats
- UPC J/ψ also described by Generalized Parton Distributions (GPDs), with some theory considerations

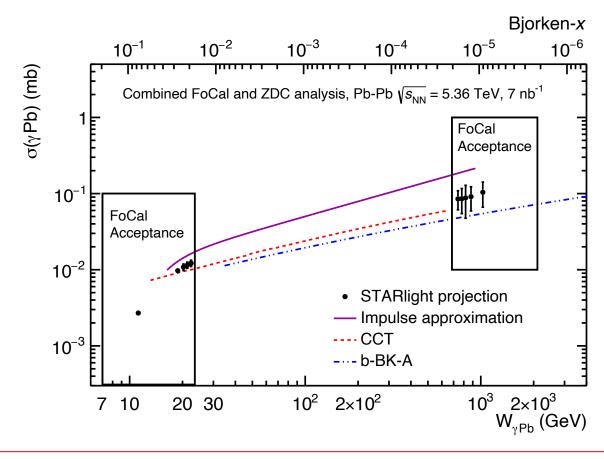
Projections for coherent J/ ψ cross section ratio in γ Pb

UPC Pb-Pb
$$\sqrt{s_{NN}} = 5.36 \text{ TeV}, 7 \text{ nb}^{-1}$$

- FoCal
 acceptance
 dominated by
 gluons and
 sensitivity to the
 form factor
- Projections here based on STARlight

Neutron-dependence of coherent J/ ψ in γ Pb

Decomposed in terms of neutron configurations emitted in the forward region


$$\frac{d\sigma}{dy} = \frac{d\sigma(0\text{n0n})}{dy} + 2\frac{d\sigma(0\text{nXn})}{dy} + \frac{d\sigma(X\text{nXn})}{dy}$$

Neutron configuration	$\sigma(\text{Pb} + \text{Pb} \to \text{J}/\psi + \text{Pb} + \text{Pb})$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
0n 0 n	28.8 mb	$47~\mu\mathrm{b}$	329,000
0nXn + Xn0n	7.3 mb	$5.0~\mu\mathrm{b}$	35,000
XnXn	3.0 mb	$2.0~\mu\mathrm{b}$	14,000

Solving the linear equations resolves the two-photon ambiguity for VMs at $y \neq 0$

$$\frac{d\sigma}{dy} = n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)$$

Projections for Neutron-dependence of coherent J/ ψ in γ Pb

- Neutrons measured with Zero Degree Calorimeters
- Projections based on STARlight
- ALICE will be the only detector capable of explore x ~ 10⁻⁶ in Pb thanks to FoCal