LHCb plans with photoinduced interactions in pA

Daniel Brandenburg On behalf of the LHCb Collaboration

Physics with high-luminosity proton-nucleus collisions at the LHC July 5th, 2024 CERN Council Chamber 503/1-001 THE OHIO STATE UNIVERSITY

Supported in part by an Early Career award from the

Office of Science

Outline & Physics Topics

- LHCb Detector + unique capabilities
- Odderon search in pA and AA
- Photoproduction (in pp, pA, and AA)
 - Vector meson production
- Exotic states, scalar and tensor mesons from $\mathbb{P} + \mathbb{P}$ and $\gamma + \gamma$ interactions
 - Searches for glueballs + tetraquark states
- Summary + Plans

The LHCb detector

- Unique coverage
 - Rapidity
 - Low transverse momentum
- Collider & Fixed Target modes
 - Unique coverage
 - Access lower COM energies at LHC
- SMOG2
 - Enables fixed target mode
 - Plethora of collision species
- Resolution
 - Precise vertex determination
 - Powerful invariant mass resolution
- Particle Identification
 - *e*, μ, π, *K*, *p*, γ in 1 < *p* < 100 GeV
- Unique forward instrumentation for pp, pPb, PbPb physics

The LHCb detector

July 5, 2024

HeRSCheL: High-Rapidity Shower Counters for LHCb $5 < |\eta| < 9$ Hole radius Hole radius LHCb x $\frac{1}{20}$ 47mm 61mm 600mm Cut-out ~108x230mm 600mm Station B2 z = -114.0mStation B1 Station B0 z = -19.7 mz = -7.5mStation F1 K. Carvalho Akiba et al 2018 JINST 13 P04017 z = 20.0mStation F2

Station F2 z = 114.0m 5

LHCb rapidity coverage

Motivations for photoinduced measurements in pA

Odderon search in pPb and PbPb

Isolating the Odderon in central production

in high energy pA and AA collisions

• C-even mesons can be produced in exclusive events either via the fusion of two C-even objects (Pomeron-Pomeron) or two C-odd objects ($\gamma + Odderon$) McNulty, Khoze, Martin, Ryskin, Eur. Phys. J. C 80, 288 (2020)

Would provide first ***direct*** observation of the odderon

Odderon Exchange from Elastic Scattering Differences between pp and $p\bar{p}$ Data at 1.96 TeV and from pp Forward Scattering Measurements

V. M. Abazov *et al.* (D0 collaboration[†]["id", "col1"], TOTEM Collaboration[‡]["id", "col2"]) Phys. Rev. Lett. **127**, 062003 – Published 4 August 2021

Phys. Rev. Lett. 127, 062003 (2021)

Odderon search approach McNulty, Khoze, Martin, Ryskin, Eur. Phys. J. C 80, 288 (2020)

Study the production of C-even mesons

 $I^{G}(J^{PC}) = 0^{+}(2^{++})$

• $f_2(1270)$ is an especially good candidate

 $PP \to f_2, PR \to f_2, \gamma O \to f_2, \gamma R \to f_2,$

- $P = Pomeron, R = Reggeon, O = Odderon, \gamma = photon$
- Signatures of Odderon:
 - Enhanced $f_2(1270)$ production
 - Asymmetry when beam/target are flipped (pPb vs. Pbp)
- C-even mesons due to Odderon- γ fusion could be quite large, up to the μ b level

L. A. Harland-Lang, V. A. Khoze, A. D. Martin and M. G. Ryskin, Phys. Rev. D 99, no. 3, 034011 (2019) [arXiv:1811.12705 [hepph]].

Signal and Backgrounds in C-even mesons

$$PP \to f_2, \quad PR \to f_2, \quad \gamma O \to f_2, \quad \gamma R \to f_2,$$

• $P = Pomeron, R = Reggeon, O = Odderon, \gamma = photon$

McNulty, Khoze, Martin, Ryskin, Eur. Phys. J. C 80, 288 (2020)

Signal and Backgrounds in C-even mesons

- 'Flipping' beam provides enhanced sensitivity to Odderon signal
- A(pPb) uses measurements of pPb vs. Pbp for the same y_{f_2}
- In PbPb collisions

 'flip' by requiring
 breakup on one
 side or the other

n and η' in pp and pPb

10.1103/PhysRevC.109.024907

- Clear identification of η and η' via invariant mass reconstruction in pPb
- η reconstructed from γ pairs identified in ECAL (clusters $p_T > 500$ MeV + isolated from charged tracks)
- η' reconstructed from η candidates (500 < $M_{\gamma\gamma}$ < 600 MeV) and charged pion pairs

Photoproduction measurements from CEP

Vector Meson Photoproduction in UPC of PbPb

1

Coherent

Incoherent

Efficient separation of coherent and incoherent thanks to HeRSCheL

pA will allow disambiguation of photon emitter / nuclear target + crucial baseline for photoproduction compared to pp, AA

Brandenburg.89@osu.edu | LHCb

J/ψ and $\psi(2S)$: Comparison With Theory

J/ψ and $\psi(2S)$: Comparison With Theory

Quarkonium production in UPCs

Nuclear modification ratio in UPCs

Genuine higher saturation contributions have the largest effect in photo-production (e.g. UPC) which cause a large suppression of the cross-section and the nuclear modification ratio at low pT

Quarkonium production in UPCs

Photon is quasi-real, take $Q^2 \rightarrow 0$ limit of our $\gamma^* A$ results (only transverse polarization survives)

Improved TMD regime of validity is very narrow: $~Q_s^2 \ll M_{J/\psi}^2$

but for large nuclei at high energies $\ Q_s^2 \sim M_{J/\psi}^2$ Need full CGC calculation!

 J/ψ production in UPCs could be very sensitive to "higher genuine saturation corrections" only present in the full CGC calculation

Better sensitivity than dijets since $M_{J/\psi}^2 \ll M_{dijet}^2$. Sudakov effect (soft radiation) should be smaller. Farid Salazar (INT @ U. Washington)

χ_c states in photo production

New results: χ_c states in photo production

First exotic measurement in events with no other activity.

Golden measurement to understand exotic production.

Brandenburg.89@osu.edu | LHCb

LHCb: Complements of SMOG2

- SMOG2 provides pA/Ap in fixed target mode
 - Access to lower $\sqrt{s_{NN}}$ at LHC
 - Mid-ranidity coverage
- CINFN le + fixed target mode php, hpp – unique to LHCb

Possible Future Upgrades: Resurrecting HeRSCHeL

Possible upgrade dedicated to UPC & CEP:

- Replace radiation damaged scintillators.
- Add additional station for symmetry

Station F2 z = 114.0m

Future Upgrades : Magnet Stations

- Instrument the internal magnet walls with a scintillator-based soft particle tracker
- Tracking for p_T>50 MeV/c
 - Essential to complete the UPC program
 - High-statistics low-mass vector, scalar and tensor mesons
 - Exotic hadrons with multiple decay products
 - Low-mass dielectrons and photon conversions

Summary

- Software-based trigger
- Excellent particle identification
- Unique coverage (rapidity and low-pT) $_{-0.4}$
- Collider + Fixed target modes
- Recent / Results coming soon!
 - Photoproduction in PbPb UPC
 - First measurement of **exclusive** $\chi \rightarrow J/\psi \phi$ in pp collisions
 - UPC K^+K^- production
 - Unique look at UPC $\rho^{\,0}$ production in PbPb
- Each analysis is possible and physics potential is significant for high-lumi pA
- Upgrades on the horizon
 - Potential future upgrades dedicated to forward physics program!
 - Improved HerSCHeL for UPC and CEP measurements
 - Even lower pT tracking via Magnet Stations

-0.2

-0.6