GLUON SATURATION IN *pA* COLLISIONS AT LHC: AN OVERVIEW

PIOTR KOTKO

AGH University, Krakow

SUPPORTED BY:

IDUB, POB8, D21 NCN GRANT DEC-2020/39/O/ST2/03011

pA collisions at high luminosity LHC workshop, CERN, 4-5 July 2024

- 1. Gluon saturation in Color Glass Condensate (CGC) framework
 - A. CGC basic correlators
 - B. TMD gluon distributions at small x
- 2. Dilute-dense "hybrid" approach to pA collisions
- 3. Phenomenological applications to selected pA processes
 - A. Single inclusive hadron production
 - B. Inclusive jet production
 - C. Inclusive photon + jet
 - D. Inclusive dijet production
- 4. Outlook

GLUON SATURATION (1)

GLUON SATURATION (2)

- saturation tames the perturbative growth $\sim 1/k_T^2$ of gluon density \bullet
- dynamically generated saturation scale $Q_s \sim Q_0 (x/x_0)^{-\lambda}$ that "runs" due to energy evolution equations

 K_T

GLUON SATURATION (3)

Obtaining realistic correlators

- A. Fit the dipole initial condition (MV model or another), integrated over impact parameter, with x-dependence given by some type of non-linear evolution equation, to the inclusive proton DIS HERA data.
- B. Compute the gluon distribution in nucleus:
 - Explicit dependence on the impact parameter (Glauber model) -
 - Apply the evolution equation with modified strength of the nonlinear term to the proton initial condition

5

Q²=0.85 GeV²

 $\Omega^2 - 45 Ge$

Q²=10.0 GeV²

Q²=15.0 Ge

Q²=35 GeV²

10-

x

x = 0.0001

6

 $b \, [\mathrm{fm}]$

 σ_r

 σ_r

 σ_r

 σ_r

 $\sigma_{\rm r_{0.5}}$

Data

Theor

 $Q^2 = 2.0 \text{ GeV}^2$

Q²=8.5 GeV

Q²=12.0 GeV

Q²=28.0 GeV

Q²=45 GeV

10-

10

х

• x = 0.01

8

10

GLUON SATURATION (4)

GLUON SATURATION (4)

7

GLUON SATURATION (5)

Obtaining TMD gluon distributions at small x

Solving B-JIMWLK using lattice methods:

[K. Rummukainen, H. Weigert, 2004] [T. Lappi, 2011]
 [T. Lappi, H. Mantysaari, 2013]
 [T. Altinoluk, G. Beuf, M. Lublinsky, V. Skokov, 2024]

[[]C. Marquet, E. Petreska, C. Roiesnel, 2016]

Progress in implementing running coupling and kinematic constraint:

[S. Cali, K. Cichy, P. Korcyl, PK, K. Kutak, C. Marquet, 2021] [P. Korcyl, L. Motyka, T. Stebel, 2024]

[A. Van Hameren, PK, K. Kutak, C. Marquet, E. Petreska, S. Sapeta, 2016]

COMPUTING pA PROCESSES

COMPUTING *pA* PROCESSES

SINGLE INCLUSIVE HADRON PRODUCTION (1)

SINGLE INCLUSIVE HADRON PRODUCTION (2)

SINGLE INCLUSIVE JET PRODUCTION

INCLUSIVE γ +JET PRODUCTION

Azimuthal correlations for FoCal/ALICE kinematics

Due to simple color flow probes solely dipole gluon distribution.

[I. Ganguli, A. van Hameren, PK, K. Kutak, 2023]

See also:

[S. Benic, O. Garcia-Montero, A. Perkov, 2022]

[J. Jalilian-Marian, 2020]

40

•

the

FORWARD DIJET PRODUCTION (1)

Two particle production in hybrid formalism of CGC

For example LO $q \rightarrow qg$ contribution:

$$\frac{d\sigma_{qA \to qg}}{d^{3}p_{1}d^{3}p_{2}} \sim \int \frac{d^{2}x_{T}}{(2\pi)^{2}} \frac{d^{2}x_{T}'}{(2\pi)^{2}} \frac{d^{2}y_{T}}{(2\pi)^{2}} \frac{d^{2}y_{T}'}{(2\pi)^{2}} e^{-i\vec{p}_{T1}\cdot(\vec{x}_{T}-\vec{x}_{T}')} e^{-i\vec{p}_{T2}\cdot(\vec{y}_{T}-\vec{y}_{T}')} \\
\times \psi_{z}^{*} \left(\vec{x}_{T}'-\vec{y}_{T}'\right) \psi_{z} \left(\vec{x}_{T}-\vec{y}_{T}\right) \\
\times \left\{S_{x}^{(6)} \left(\vec{y}_{T},\vec{x}_{T},\vec{y}_{T}',\vec{x}_{T}'\right) - S_{x}^{(4)} \left(\vec{y}_{T},\vec{x}_{T},\vec{z}\vec{y}_{T}'+z\vec{x}_{T}'\right) \\
-S_{x}^{(4)} \left(\vec{z}\vec{y}_{T}+z\vec{x}_{T},\vec{y}_{T}',\vec{x}_{T}'\right) - S_{x}^{(2)} \left(\vec{z}\vec{y}_{T}+z\vec{x}_{T},\vec{z}\vec{y}_{T}'+z\vec{x}_{T}'\right)$$

with Wilson line correlators:

$$S_x^{(2)}\left(\vec{y}_T, \vec{x}_T\right) = \frac{1}{N_c} \left\langle \operatorname{Tr} U(\vec{y}_T) U^{\dagger}(\vec{x}_T) \right\rangle_x$$

$$S_x^{(4)}\left(\vec{z}_T, \vec{y}_T, \vec{x}_T\right) = \frac{1}{2C_F N_c} \left\langle \operatorname{Tr} \left[U(\vec{z}_T) U^{\dagger}(\vec{y}_T) \right] \operatorname{Tr} \left[U(\vec{y}_T) U^{\dagger}(\vec{x}_T) \right] \right\rangle_x - S_x^{(2)}\left(\vec{z}_T, \vec{x}_T\right)$$

etc...

where
$$U(\vec{x}_T) = \mathscr{P} \exp\left\{ig \int_{-\infty}^{+\infty} dx^+ A_a^-(x^+, \vec{x}_T) t^a\right\}$$

 forward dijets in pA collisions in CGC: real corrections

[E. Iancu, Y. Mulian, 2021]

FORWARD DIJET PRODUCTION (2)

FORWARD DIJET PRODUCTION (3)

How good is ITMD comparing to full CGC?

FORWARD DIJET PRODUCTION (4)

- Understanding the k_T dependence of small-x TMD gluon distributions requires measurements of azimuthal correlations (or decorrelations) for various types of final states (and projectiles).
- However, they are very sensitive to initial state-unrelated effects (Sudakov logs), especially for jets.
- The Sudakov effects cancel, to large extent, in p+A to p+p ratio.
- Therefore measurements of R_{pA} (and not the conditional yields), as a function of various kinematic variables, is indispensable in studying possible saturation signals and discriminating it from other mechanisms.

BACKUP

BROADENING (1)

ITMD vs ATLAS data

Measurement of dijet azimuthal correlations in p+p and p+Pb. [ATLAS, Phys. Rev. C100 (2019)]

$$\sqrt{S} = 5.02 \,\text{TeV}$$
 rapidity: 2.7 < $y_1, y_2 < 4.5$

We study only the <u>shape</u> of C for p+p and p+Pb.

Good description of the broadening effects.

Similar studies done at RHIC for particle production...

A. Van Hameren, P. Kotko, K. Kutak, S. Sapeta, Phys. Lett. B795 (2019) 511

BROADENING (2)

